FLOGEN Logo
In Honor of Nobel Laureate Dr. Avram Hershko
SIPS 2024 logo
SIPS 2024 takes place from October 20 - 24, 2024 at the Out of the Blue Resort in Crete, Greece

Honoree Banner
PROGRAM NOW AVAILABLE - CLICK HERE

More than 500 abstracts submitted from over 50 countries


Featuring many Nobel Laureates and other Distinguished Guests

ADVANCED PROGRAM

Orals | Summit Plenaries | Round Tables | Posters | Authors Index


Click here to download a file of the displayed program

Oral Presentations


SESSION:
GlassMonPM4-R3
Oktik International Symposium (2nd Intl. Symp. on Sustainable Glass and Polymers Processing and Applications)
Mon. 21 Oct. 2024 / Room: Marika B2
Session Chairs: Sener Oktik; Zhuoer Jiang; Student Monitors: TBA

18:30: [GlassMonPM416] OS
PREPARATION OF HIGH-QUALITY VN VIA CORE-SHELL PRECURSOR METHOD UNDER THE INTERVENTION OF DISPERSANTS
Wenbin Bo1; Yimin Zhang1; Nannan Xue1; Hong Liu1
1Wuhan University of Science and Technology, Wuhan, China
Paper ID: 94 [Abstract]

Vanadium nitride (VN) plays an important role in high-strength steel production due to the unique precipitation strengthening and grain refinement effects [1]. high-purity VN is widely used in the fields of advanced materials, batteries and catalysts since high electrical conductivity, high thermal conductivity and good chemical stability [2, 3]. The traditional method for preparing VN is the carbon thermal reduction method [4]. Nowadays, thermal processing precursor method is highly anticipated for preparing high-quality VN due to lower reaction temperature, simple process, and short production process [5]. This method includes two steps, which the precursors containing the shell of vanadium and core of carbon powders are formed and then the precursors are reduced and nitrided in the N2 atmosphere to obtain VN.

However, carbon powders are difficult to disperse in the solution uniformly owing to the huge surface tension and adsorption properties, and the precursors prepared subsequently are agglomerate. This is the main reason that the reaction is insufficient during the nitrogen reduction process, which affects the quality of VN. 

In response to the above issue, Polyvinyl pyrrolidone (PVP) and the other two dispersants are used to optimize the structure of the precursors in order to prepare high quality VN. Under optimum condition of 1150 °C, the VN with nitrogen content of 17.94% is prepared by adding 5% PVP. When the reaction temperature exceeds 400 °C, the precursors of adding 5% PVP are easily converted to V7O13, V3O5, V2O3 and VN at the same temperature. The precursors of adding 5% PVP have lower Ea during reduction and nitration process, which are easier to be reduced and nitridated. In comparison with the process without adding dispersants, the addition of carbon powders is reduced by 9% and the nitriding time is decreased by 75%, which reduce CO2 emission, the energy consumption for generation and the production cost.

References:
[1] J. Klemm-Toole, A.J. Clarke, K.O. Findley. Mater. Sci. Eng., R: A, 810 (2021) 141008.
[2] R.K. Li, J.Q. Lu, C.J. Li, Y. Cui, D.F. Lv, Y.J. Chen, Y.N. Wei, H.Y. Wei, B. Liang, J.L. Bu. Colloids Surf., A, 686 (2024) 133420.
[3] D. Chen, M.J. Lu, B.R. Wang, R.Q. Chai, L. Li, D. Cai, H. Yang, B.K. Liu, Y.P. Zhang, W. Han. Energy Stor., 35(2021) 679-686.
[4] M.T. Ye, N.J. Bu, L. Chen, R. Li, Q. Zhen. Ceram. Int., 50(5) (2024) 7458-7468.
[5] J.L. Han, Y.M. Zhang, T. Liu, J. Huang, N.N. Xue, P.C. Hu. Metals, 7(9) (2017) 360.


18:50 THEME BUFFET DINNER & SHOW - Secret Garden (outdoor)



SESSION:
NonferrousTuePM3-R5
Stelter International Symposium (10th Intl. Symp. on Sustainable Non-ferrous Smelting & Hydro/Electrochemical Processing)
Tue. 22 Oct. 2024 / Room: Lida
Session Chairs: Junnile Romero; Student Monitors: TBA

16:45: [NonferrousTuePM311] OS
CLEAN SHORT-FLOW PREPARATION OF ELECTROLYTE FROM VANADIUM SHALE LEACHING SOLUTION BY SOLVENT EXTRACTION
Hong Ru Qu1; Yimin Zhang1; Hong Liu1; Nannan Xue1
1Wuhan University of Science and Technology, Wuhan, China
Paper ID: 92 [Abstract]

Vanadium is a valuable and rare resource widely used in chemical manufacturing, military affairs, aerospace, metallurgical industry and other fields [1], and China is rich in vanadium resources, accounting for 34% of the world's total, ranking first in the world. Vanadium mainly in the form of vanadium-titanium magnetite and vanadium-bearing coal [2]. As a new type of energy storage technology, vanadium redox flow battery has been widely studied due to its advantages of environmental protection, long-life, safety and flexible power design [3]. Vanadium electrolyte is an important component of vanadium batteries, and it is directly related to the performance and cycle life of vanadium batteries [4]. Solvent extraction is widely used for the extraction of vanadium. It can prepare electrolyte from vanadium-containing solution, eliminating the steps of vanadium precipitation, impurity removal and dissolution, which meets the requirements of energy saving and environmental protection. Based on the above, we propose a clean and short process for the preparation of vanadium electrolyte from vanadium shale leaching solution by solvent extraction.

An oxidative stripping system, with the low concentrations of hydrogen peroxide and sodium hypochlorite was introduced to facilitate vanadium recovery and further separation of impurities from the leach solution. In order to investigate the mechanism, FTIR and Raman spectroscopy were used to investigate the changes in valence bonding before and after extraction and stripping. The concentration of vanadium and other impurities in the vanadium-rich liquid was investigated by ICP to determine whether it complied with national standards(GB/T 37204-2018).

After reduction and enrichment, a high purity vanadium electrolyte with low concentration of impurities was prepared. The prepared electrolyte exhibits acceptable electrochemical and charge/discharge properties. The method saves a large amount of preparation cost than the traditional method and does not produce ammonia, nitrogen or harmful gases. The technology is economically reasonable and eco-friendly, and is expected to be applied to large-scale production and promote the development of vanadium redox flow battery and new energy.

 

References:
[1] Z.L. Yan, X.Y. Zhang, X.D. Tian, Q. Zhu, J.S. Xie, Hydrometallurgy. 139 (2013) 9-12.
[2] Y.W. Hu, Y.M. Zhang, T. Liu, H. Liu, J Clean Prod. 394 (2023) 136389.
[3] D. Lamsal, V. Sreeram, Y. Mishra, et al. Renew Sust Energ Rev, 113 (2019) 109245.
[4] Y. Liu, Q.G. Li, T. Zhang, X.S. Wu, J.W. Du, G.Q. Zhang, L. Zeng, Hydrometallurgy, 203 (2021) 105611.


17:25 POSTERS/EXHIBITION - Ballroom Foyer

SESSION:
ConstructionTuePM3-R10
9th International Symposium on Sustainable Construction Materials
Tue. 22 Oct. 2024 / Room: Dazzle D.
Session Chairs: Harn Wei Kua; Jing Huang; Student Monitors: TBA

17:05: [ConstructionTuePM312] OS
HIGH SILICON VANADIUM-BEARING SHALE TAILING FOR THE SYNTHESIS OF ONE-PART GEOPOLYMER
Zhijie Guo1; Tao Liu1; Yimin Zhang1; Jing Huang1; Pengcheng Hu1
1Wuhan University of Science and Technology, Wuhan, China
Paper ID: 91 [Abstract]

Vanadium-bearing shale tailing is a type of solid waste with high silicon content. Due to high storage capacity, high production capacity, and low utilization rate, Vanadium-bearing shale tailing needs to be thoroughly studied to achieve resource utilization. [1] Alkali activated two-part geopolymer is a new type of inorganic polymer material made from aluminosilicate minerals. Due to environmental-friendly, excellent mechanical properties, and advantages in immobilizing heavy metals, geopolymer is the most promising inorganic polymer material to replace traditional Portland cement. [2] However, two-part geopolymer synthetic raw materials include two parts: alkali activator solution and active aluminosilicate powder. [3] The potential safety risks and operational difficulties of high concentration and high alkalinity alkaline corrosive activator solutions may limit the application of geopolymer. Therefore, researchers propose using solid alkali activators to prepare one-part geopolymer. [4] The chemical composition of Vanadium-bearing shale tailing indicates that it is suitable for synthesizing silicate based solid alkali activator.

There has been extensive research on the preparation of alkali activators from industrial solid waste, and the preparation methods can be mainly divided into three categories: fusion, hydrothermal, and thermochemical. [5] This study used thermochemical method to treat Vanadium-bearing shale tailing to prepare solid alkali activator. Then, the solid alkaline activator activates the metakaolin to synthesize one-part geopolymer.

XRD, Raman, and pH tests were used to analyze the significant effects of reaction temperature and sodium hydroxide dosage on the phase composition and activation effect of solid alkali activators. When the thermochemical activation temperature are 1073.15 K ~ 1273.15 K, the ratio of sodium hydroxide to Vanadium-bearing shale tailing are 90% ~ 100%, and the ratio of solid alkali activator to metakaolin are 66.7% ~ 100%, the compressive strength of one-part geopolymer is above 40 MPa. The main silicate phases of solid alkali activators are sodium silicate. XRD, SEM-EDS, Raman and NMR analyses indicate that sodium silicate mainly plays a role in alkali activation, and sodium silicate can be used as one-part geopolymer silicate raw material. 

The one-part geopolymer synthesized by alkali activator from Vanadium-bearing shale tailing has excellent compressive performance. Solid alkali activator can replace commercial sodium silicate as a cost-effective and environmental-friendly to prepare one-part geopolymer.

References:
[1] S.X. Bao, Y.P. Luo, Y.M. Zhang. INT J MIN MET MATER, 29 (2022) 177-184.
[2] C.S. Chen, K. Sasaki, Q.Z. Tian, H.J. Zhang. J. Build. Eng., 80 (2023) 107938.
[3] F. Sahin, M. Uysal, O. Canpolat. Constr. Build. Mater., 278 (2021) 122414.
[4] I.D.S.D. Santos, S.X. Bao, M.Y. Huang. J. Build. Eng., 76 (2023) 107265.
[5] M.H. Samarakoon, P.G. Ranjith, W.H. Duan, A. Haque, B.K. Chen. Waste Manage., 130 (2021) 1-11.


17:25 POSTERS/EXHIBITION - Ballroom Foyer



8:00 SUMMIT PLENARY - Marika A Ballroom
12:00 LUNCH/POSTERS/EXHIBITION - Red Pepper

SESSION:
MineralWedPM1-R5
Anastassakis International Symposium (10th Intl. Symp. on Sustainable Mineral Processing)
Wed. 23 Oct. 2024 / Room: Lida
Session Chairs: Georgios N. Anastassakis; Carlos Petter; Student Monitors: TBA

13:00: [MineralWedPM101] OS
MINERAL GENETIC CHARACTERISTICS OF VANADIUM SHALE AND SCIENTIFIC ELUCIDATION OF THE INTENSIFICATION PROCESS FOR VANADIUM EXTRACTION
Qiushi Zheng1; Yimin Zhang1; Nannan Xue1
1Wuhan University of Science and Technology, Wuhan, China
Paper ID: 127 [Abstract]

The vanadium shale is a unique and valuable resource of vanadium, and its efficient development can significantly contribute to the expansion of the overall available vanadium resources. However, the distribution of vanadium shale resources is widespread, with varying ore properties and significantly regional extraction characteristics. Currently, the process mineralogy data of vanadium shale is intricate and indistinct, while gangue impurity elements also hinder the detection of vanadium traces within the lattice structure. In terms of technical reliability, replicating and popularizing advanced technology proves challenging due to the unclear mechanism behind vanadium extraction from shale. The crystal lattice characteristics and vanadium extraction rules of vanadium shales are investigated based on the analysis of vanadium shales in China, providing insights into the process of vanadium coordination transformation and migration within vanadium shale. With the aid of quantum chemistry and numerical simulation methods, significant advancements have been made in enhancing the mineral genetic information of vanadium shale, thereby unveiling the fundamental mechanisms underlying key strengthening technologies for efficient extraction of vanadium from shale. The primary objective of this study is to facilitate the sustainable development of highly effective and environmentally friendly extraction techniques for utilizing vanadium resources from shale.

References:
[1] S.F. Dai, X. Zheng, X.B. Wang, R.B. Finkelman, Y.F. Jiang, D.Y. Ren, X.Y. Yan, Y.P. Zhou. Int Geol Rev, 60 (2017) 736-753.
[2] Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, J. Huang. Hydrometallurgy, 109 (2011) 116-124.
[3] Q.S. Zheng, Y.M. Zhang, T. Liu, J. Huang, N.N. Xue. Hydrometallurgy, 187 (2019) 141-148.
[4] Q.S. Zheng, Y.M. Zhang, N.N. Xue. Colloid Surface A, 651 (2022) 129773.


14:20 POSTERS/EXHIBITION - Ballroom Foyer