SESSION: MineralMonPM2-R5 |
Anastassakis International Symposium (10th Intl. Symp. on Sustainable Mineral Processing) |
Mon. 21 Oct. 2024 / Room: Lida | |
Session Chairs: Georgios N. Anastassakis; Eirini Evangelou; Student Monitors: TBA |
Xanthates is a family of highly efficient collectors, widely used in the industry of sulphide minerals flotation, which, however is considered toxic and hazardous to the environment, and can pose significant risks to aquatic life and human health. The need for its replacement by other more environmental friendly reagents is of vital importance towards a more sustainable extractive industry.
Organosolv lignin is natural, biodegradable material that possesses a low carbon footprint compared to the conventional reagents. The study investigates the potentiality of the use of organosolv lignin as collector in the flotation of metalic sulphide minerals (sphalerite, pyrite/arsenopyrite) from greek mixed sulphides. Critical parameters under investigation was the collector dosage and composition, while the efficiency of the collector formula was evaluated according to the achieved selectivity, grade and recovery. To simulate and evaluate the performance of the optimum formula under realistic operating conditions, locked cycle flotation tests were carried out and the results are discussed.
SESSION: MineralWedPM2-R5 |
Anastassakis International Symposium (10th Intl. Symp. on Sustainable Mineral Processing) |
Wed. 23 Oct. 2024 / Room: Lida | |
Session Chairs: Jorge Gavronski; Carlos Petter; Student Monitors: TBA |
The industrial metallurgical processing of spodumene, for the extraction of lithium hydroxide or lithium carbonate, comprises the calcination of a-spodumene to b-spodumene at 1100 oC followed by its leaching with sulfuric acid at 250 oC. Both steps are energy-intensive, while they present a high environment footprint [1]. Recent researches aim to the replacement of calcination/H2SO4 leaching steps by a single less energy-intensive process. Whitin this framework, among other techniques, the direct hydrothermal processing of a-spodumene, aiming to its conversion to lithium intermediate products, using sodium hydroxide at high temperature and pressure conditions, has been proposed. Despite the implemented experimental work [2-4], the literature is poor concerning the thermodynamic description of the process. Furthermore, contradictory results are presented in respect of the formed reaction products. The present study is focused on the thermodynamic study of the a-spodumene ore-NaOH system, by the using of HSC 10 software, in respect of various parameters including the: temperature, pressure, stoichiometry of the reagents and the addition of CaO as an additive. The equilibrium phase diagrams of lithium and non-lithium containing phases and, as well as, Pourbaix diagrams were conducted.