SESSION: MathematicsMonPM1-R3 |
Rowlands International Symposium (7th Intl. Symp. on Sustainable Mathematics Applications) |
Mon. 21 Oct. 2024 / Room: Marika B2 | |
Session Chairs: Mike Mikalajunas; Student Monitors: TBA |
Physics, at the fundamental level, is concerned only with a single system, that of the fermion or fundamental particle, and it is possible to conceive the actions of the entire universe as those of a single fermion. We have had a quantum mechanical equation for the fermion – the Dirac equation for nearly a hundred years – but no one has imagined that that equation alone could even lead to all the developments encoded in the Standard Model of particle physics. This is partly because the equation is not normally expressed in its most significantly meaningful form, but it is also because ‘derivation’ is generally taken to mean a deductive mathematical consequence given certain conditions rather than an unfolding of the innate structure that is built into the equation as a result of more fundamental principles. The equation is not necessarily the source of these principles, rather the codification of them. In fact, given these additional considerations, it is possible to see the equation in its most physically meaningful form as the source of all current aspects of the Standard Model and even some things beyond it. In addition, the full statement of the equation is not necessary for these derivations, only the definition of the fermion creation operator that the equation requires. So, the question that we will be answering is the more restricted one of whether physics can be defined by a single operator, rather than a single equation.