FLOGEN Logo
In Honor of Nobel Laureate Dr. Avram Hershko
SIPS 2024 logo
SIPS 2024 takes place from October 20 - 24, 2024 at the Out of the Blue Resort in Crete, Greece

Honoree Banner
PROGRAM NOW AVAILABLE - CLICK HERE

More than 500 abstracts submitted from over 50 countries


Featuring many Nobel Laureates and other Distinguished Guests

ADVANCED PROGRAM

Orals | Summit Plenaries | Round Tables | Posters | Authors Index


Click here to download a file of the displayed program

Oral Presentations


SESSION:
OxidativeMonPM2-R1
Abe International Symposium (4th Intl. Symp. on Oxidative Stress for Sustainable Development of Human Beings)
Mon. 21 Oct. 2024 / Room: Marika A
Session Chairs: Haruhiko Inufusa; Kumiko Sugiyama; Student Monitors: TBA

15:05: [OxidativeMonPM207] OS Keynote
FRAGRANCE POLLUTION INDUCES OXIDATIVE STRESS AND TRIGGERS MULTIPLE CHEMICAL SENSITIVITY
Kazuha Fujiwara1; Hiroshi Satoh2; Kumiko Sugiyama2; Emi Ide2; Kanako Baba2; Scott Daniska3; David Dickerson4
1Nara Women's University, Nara, Japan; 2Nagasaki International University, Sasebo, Japan; 3N/A, Bethel, United States; 4N/A, Rock Island, United States
Paper ID: 86 [Abstract]

Background: Multiple Chemical Sensitivity (MCS) is a rising concern worldwide, particularly in Japan, where the number of individuals with high chemical sensitivity has increased by 500% over the past decade, with the current prevalence estimated to be 1 in 7 people. The exposure to fragrances in households continues to rise, as fragrance chemicals are found in nearly every household product. Limonene, an ingredient common to 77% of fragrance products, converts to formaldehyde in the air, which potentially implicates it in MCS pathology due to the generation of oxidative stress.[1][2]

Purpose: This study aims to investigate the relationship between a fragrance ingredient, formaldehyde generation, oxidative stress, and MCS pathology.

Methods: Over 40 Japanese detergents and fabric softeners were assessed for common ingredients, with limonene identified as the most prevalent. Gas detection methods were employed to measure the amount of formaldehyde generated from limonene.

Results: Heating limonene to 37°C produced formaldehyde concentrations exceeding indoor air quality standards, when the concentration of limonene was around 400 ppm (in the range of an easily detectable to strong odor). The concentration of formaldehyde surpasses permissible regulatory indoor standards and could increase oxidative stress in airway tissue and the blood.[3] This toxic effect potentially suggests a pathological mechanism for triggering MCS symptoms.

Conclusions: These findings highlight the potential role of common fragrance ingredients in formaldehyde generation in households. The formaldehyde concentration reached exceeded indoor safe standards, which presents a necessity to investigate the relationship with MCS pathology further, mediated by changes in oxidative stress levels in airway tissue and blood.[4]

References:
[1] BBC News. "Is there a danger from scented products?" https://www.bbc.co.uk/news/magazine-35281338
[2] Anne Steinemann. “The fragranced products phenomenon: air quality and health, science and policy”: Air Qual Atmos Health 14 235–243 2021
[3] Kim, K.-H., et al. "Exposure to Formaldehyde and Its Potential Human Health Hazards": J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 29(4) 277-99 2022
[4] Umansky, C., et al. "Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity": Nat. Commun. 13 745 2022


15:45 COFFEE BREAK/POSTERS/EXHIBITION - Ballroom Foyer