FLOGEN Logo
In Honor of Nobel Laureate Dr. Avram Hershko
SIPS 2024 logo
SIPS 2024 takes place from October 20 - 24, 2024 at the Out of the Blue Resort in Crete, Greece

Honoree Banner
PROGRAM NOW AVAILABLE - CLICK HERE

More than 500 abstracts submitted from over 50 countries


Featuring many Nobel Laureates and other Distinguished Guests

ADVANCED PROGRAM

Orals | Summit Plenaries | Round Tables | Posters | Authors Index


Click here to download a file of the displayed program

Oral Presentations


8:00 SUMMIT PLENARY - Marika A Ballroom
12:00 LUNCH/POSTERS/EXHIBITION - Red Pepper

SESSION:
CompositeMonPM1-R8
Monteiro International Symposium on Composite, Ceramic & Nano Materials Processing, Characterization & Applications (10th Intl. Symp.)
Mon. 21 Oct. 2024 / Room: Ariadni B
Session Chairs: Sergio Monteiro; Henry Alonso Colorado Lopera; Student Monitors: TBA

13:20: [CompositeMonPM102] OS Keynote
NATURAL FIBERS FROM SOUTH AMERICA: AN INEXHAUSTIBLE SOURCE OF SUSTAINABLE MATERIALS
Henry Alonso Colorado Lopera1; Sergio Monteiro2; Marc Meyers3
1Universidad de Antioquia, Medellín, Colombia; 2Military Institute of Engineering, Rio de Janeiro, Brazil; 3University of California San Diego, Del Mar, United States
Paper ID: 475 [Abstract]

Pollution has profound impacts on human health, the environment, and Earth's systems, including climate regulation. Its reach is global, affecting our well-being through contaminated food, water, and air. Material engineers and scientists play a crucial role in addressing these challenges through innovative materials and manufacturing techniques. One promising sustainable solution involves utilizing eco-friendly materials sourced from nature.

In this presentation, we delve into natural fibers, exploring their fundamentals to practical applications for engineering. Natural fibers are more environmentally conscious and sustainably produced. These fibers and their composites offer a sustainable alternative, being both environmentally conscious and responsibly manufactured. They can be transformed into functional materials suitable for various uses, displaying their versatility and potential.

Most of the fibers have been used for centuries by ancient communities, forming a fascinating field known as cultural materials research. It will focused on fibers sourced from the Andes Mountains and the Amazon River region, in the traditional uses, microstructure, properties, and their potential applications in modern materials engineering. 



14:20 POSTERS/EXHIBITION - Ballroom Foyer

SESSION:
CompositeMonPM2-R8
Monteiro International Symposium on Composite, Ceramic & Nano Materials Processing, Characterization & Applications (10th Intl. Symp.)
Mon. 21 Oct. 2024 / Room: Ariadni B
Session Chairs: Sergio Monteiro; Thomaz Jacintho Lopes; Student Monitors: TBA

14:25: [CompositeMonPM205] OS Invited
FIQUE: A NATURAL FIBER FROM ANDES MOUNTAIN RANGE FROM COLOMBIA
Henry Alonso Colorado Lopera1; Sergio Monteiro2; Marc Meyers3
1Universidad de Antioquia, Medellín, Colombia; 2Military Institute of Engineering, Rio de Janeiro, Brazil; 3University of California San Diego, Del Mar, United States
Paper ID: 388 [Abstract]

This research summarizes results regarding a vegetable natural fiber from Colombia, produced in the leaves of the fique plant, a species from the genus Furcraea andina. Fique is a strong natural fiber used for centuries for local indigenous peoples in Colombia, and later used for farmers and locals to produce crafts, clothes, shoes, and bags, among other traditional objects. Recently, fique has been used in combination with clays and cements as a construction material, and also as a reinforcement in polymer matrix composite in a strong collaboration between Colombia and Brazil, particularly for ballistic protection and other dynamic applications. Tensile tests and scanning electron microscopy characterization is presented here, with a discussion of possibilities for fique in engineering.



15:45 COFFEE BREAK/POSTERS/EXHIBITION - Ballroom Foyer

SESSION:
CompositeMonPM4-R8
Monteiro International Symposium on Composite, Ceramic & Nano Materials Processing, Characterization & Applications (10th Intl. Symp.)
Mon. 21 Oct. 2024 / Room: Ariadni B
Session Chairs: Sergio Monteiro; Student Monitors: TBA

18:10: [CompositeMonPM415] OS
THE EMBIRA BARK FIBER: A SUSTAINABLE AMAZON TAPE
Marc Meyers1; Sheron S. Tavares2; Lucas Neuba3; Henry Alonso Colorado Lopera4; Sergio Monteiro5
1University of California San Diego, Del Mar, United States; 2University of California, San Diego, United States; 3Military Institute of Engineering, Volta Redonda, Brazil; 4Universidad de Antioquia, Medellín, Colombia; 5Military Institute of Engineering, Rio de Janeiro, Brazil
Paper ID: 512 [Abstract]

The embira bark fiber is routinely used in Brazil to construct simple structures because of its ease of extraction, flexibility, and considerable strength. It plays an important role, somewhat similar to duct tape, and is commonly used for temporary repairs and tying objects. The flexible bark is removed from the tree by making two cuts into it and manually pulling off the fibrous structure. Three similar but distinct embira bark fibers are characterized structurally and mechanically: embira branca, embira capa bode, and embira chichá.  The bark separates readily into strips with thicknesses between 0.3 and 1 mm, enabling it to be twisted and bent without damage. The structure consists of aligned cellulose fibers bound by lignin and hemicellulose. Thus, it is a natural composite. The tensile strength of the three fibers varies in the range of  25 to 100 MPa, with no clear difference between them. There is structural and strength consistency among them. The mechanical strength of embira branca is measured with other lignocellulosic fibers X-ray diffraction identifies two major components: the monoclinic crystalline structure of cellulose and an amorphous phase; the crystallinity index is approximately 50%.



18:50 THEME BUFFET DINNER & SHOW - Secret Garden (outdoor)