FLOGEN Logo
In Honor of Nobel Laureate Dr. Avram Hershko
SIPS 2024 logo
SIPS 2024 takes place from October 20 - 24, 2024 at the Out of the Blue Resort in Crete, Greece

Honoree Banner
PROGRAM NOW AVAILABLE - CLICK HERE

More than 500 abstracts submitted from over 50 countries


Featuring many Nobel Laureates and other Distinguished Guests

ADVANCED PROGRAM

Orals | Summit Plenaries | Round Tables | Posters | Authors Index


Click here to download a file of the displayed program

Oral Presentations


SESSION:
PharmaceuticalTuePM3-R4
Leuenberger International Symposium on Pharmaceutical Sciences and Industrial Applications for Sustainable Development
Tue. 22 Oct. 2024 / Room: Minos
Session Chairs: Hassan Tarabishi; Martin Bultmann; Student Monitors: TBA

16:25: [PharmaceuticalTuePM310] OS
ENERGIZED STRUCTURED WATER, FREQUENCIES AND HEALTH EXAMPLE OF STRUCTURED WATER BASED BIOCIDE
Hassan Tarabishi1; Alhassan Hamad1; Hans George Breitmoser2
1Somicon Industrial, Sharjah, United Arab Emirates; 2Hyperdes Water Technology, Wörnitz, Germany
Paper ID: 391 [Abstract]

Energized structured water (SW) consists of relative stable h-bonded cyclic rings with quasi-free electron swarm and readily available protons. Structured water (SW) in contact with hydrophilic biological surfaces, like cell or mitochondria membranes, proteins and DNA turns into biological structured water (BSW) or exclusion zone (EZ), adheres to the surface and is the main charge contributor due to its energized quasi-free electrons and adjacent proton +H or hydronium ion +H3O. Thus, playing a major rule in cell redox reactions, respiratory functions and in maintaining healthy cellular functions [1-5]. Negatively charged (SW) unexpectedly adheres to negatively charged lipid membrane surfaces and forms exclusion zone (EZ) [6]. According to Quantum Electrodynamics (QED) theory, resonance attraction forces (SW) is generated when coherent domains (CD) oscillate in phase with resonant waves emitted from the lipid membranes [7]. 

Aquaporins in cell and mitochondria membranes are more permeable for SW/BSW than liquid bulk water enhancing the functionality of mitochondria and cell [8-10]. Mitochondrial heat energy (53-54°C) equivalent to FIR of 10174 nm [11] is absorbed by BSW, increasing EZ layers and providing additional energized quasi-free electrons for cellular activities, acting like an energy store [12-13]. Near-infrared and red-light wavelengths, directly from the sun or indirectly through Schumann Resonance (SR) frequencies (7.8, 14.1, 20.3, 26.3 and 32.5 Hz) [11,14], has higher energy to penetrate the body and increase (EZ) layers in the cells. Interestingly, Schumann Resonance (SR) frequencies agree with the human brain electroencephalogram (EEG) frequencies. These waves can carry & transmit specific resonating information (EMF) to the coherent domains (CDs) in the hexagonal ring-layers of (BSW) initiating specific cellular functions similar to old radio receivers that use hexagonal silicon quartz crystal [15]. Furthermore, Dr. Luc Montagnier demonstrated that weak EMF at 7.8 Hz for 18 hours could transfer specific DNA (EMF) to SW in another tube, where DNA signals were detectable even at extreme dilutions, referred to as water memory (WM). This water, when exposed to specific DNA (EMF) digital acoustic files, can reproduce the same DNA strain in a PCR reactor, called Water Transduction (WT) [16-17]. Qi or Ki, transmitted by a trained person, through special breathing techniques by Nishino, in near-infrared wavelengths (0.8-2.7 µm), can manipulate muscle contraction and suppress cancer cell growth in vitro [18]. The explanation lies in the influence of NIF on (EZ) water in the cells. Water respiration (WR) energy theory is based on a cascade of redox reactions including reactive oxygen species (ROS), which is considered the main cause for age-related diseases. However, when superconductivity, a characteristic of BSW, is considered, redox reactions in vivo could occur at superconductive speeds without causing detectable (ROS) damages [19-23]. Along with BSW, cells require a four-fold excess of oxygen to prevent ROS accumulation injury [19]. Specific (EMF) wavelengths, such as infrared radiation energize BSW maintaining good O2 levels within cells.

Neutrophils inactivate pathogens through NADPH oxidase producing Radical Oxygen Species (ROS) in a process called respiratory burst, which increases oxygen consumption by 10-15-fold [19,24-25]. Myeloperoxidase MPO then produces localized small quantities of HOCl as biocide. Studies found that (SW) increases Natural Killer cell activity from 8% to 25% and doubling phagocytic activity [26]. In a close manner, our innovative PLUS biocide, which consist mainly of (SW) water99.7% and HOCl with traces of other (ROS) biocides totally equivalent to 250 ppm free chlorine, inactivates pathogens and enhances cell functionality/metabolism. PLUS's physiological effect can’t be solely attributed to 250 ppm free chlorine. Its wide spectrum and fast eliminations of pathogens incl. viruses, Chlorine resistant bacteria and spores > 99,9999% qualifies PLUS as a “chemical sterilant”. Simultaneously, due to its (SW) water, enhance and support cell granulation and speed up damaged area recovery (e.g. wounds & burns), safe on dermatological cells/skin and non-bleach. PLUS is produced in a unique reactor by electrolysis of NaCl salted purified water, producing hydroxylated water with hydronium ions +H3O and hydroxyl radicals OH. These reform into (SW) water with stronger H-bonds that favor cyclic rings enhancing electrical conductivity and dielectric constant [27-29]. PLUS, generation process involves a combination of synergetic technologies like ionizing energy, electromagnetic field (EMF), resonance, catalytic TiO2 and ceramics membrane, ozone + hydrogen peroxide reactions to form stable gentle biocide with energized (SW) & HOCl. Plus is stable with pH 7 unlike chemically produced HOCl stable at pH 4-5. Additionally, its UV spectrum differs from chemically produced HOCl with 2 peaks around 240 and 290 nm. Plus, safe and effective regime of disinfection opens doors for new holistic biocide supporting human health and animals’ wellbeing.

References:
[1] Pang XF. Properties of proton transfer in hydrogen-bonded systems and its experimental evidence and applications in biology. Progress in Biophysics and Molecular Biology 2013; 112(1-2): 1-32. https://doi.org/10.1016/j.pbiomolbio.2012.11.003
[2] Odella E, Secor M, Reyes Cruz EA, Guerra WD, Urrutia MN, Liddell PA, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Managing the redox potential of PCET in grotthuss-type proton wires. Journal of the American Chemical Society 2022; 144(34): 15672-9. https://doi.org/10.1021/jacs.2c05820
[3] Odella E, Mora SJ, Wadsworth BL, Goings JJ, Gervaldo MA, Sereno LE, Groy TL, Gust D, Moore TA, Moore GF, Hammes-Schiffer S. Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires. Chemical science 2020; 11(15): 3820-8. https://doi.org/10.1039/C9SC06010C
[4] Goings JJ, Hammes-Schiffer S. Nonequilibrium dynamics of proton-coupled electron transfer in proton wires: concerted but asynchronous mechanisms ACS. Central Science 2020; 6(9): 1594-601. https://doi.org/10.1021/acscentsci.0c00756
[5] Davidson RM, Lauritzen A, Seneff S. Biological water dynamics and entropy: a biophysical origin of cancer and other diseases. Entropy 2013; 15(9): 3822-76. https://doi.org/10.3390/e15093822
[6] Abha Sharma, Colby Adams, Benjamin D. Cashdollar, Zheng Li, Nam V. Nguyen, Himasri Sai, Jiachun Shi, Gautham Velchuru, Kevin Z. Zhu, and Gerald H. Pollack. Effect of Health-Promoting Agents on Exclusion-Zone Size. Published online 2018 Sep 3. doi: 10.1177/1559325818796937
[7] Del Giudice E, Voeikov V, Tedeschi A, Vitiello G. The origin and the special role of coherent water in living systems. Fields of the Cell 2015; 95-111.
[8] Ikaga R, Namekata I, Kotiadis VN, Ogawa H, Duchen MR, Tanaka H, Iida-Tanaka N. Knockdown of aquaporin8 induces mitochondrial dysfunction in 3T3-L1 cells. Biochemistry and biophysics reports 2015; 4: 187-95. https://doi.org/10.1016/j.bbrep.2015.09.009
[9] Kozumi T, Kitagawa Y. Water structure changes induced by ceramics can be detected by increased permeability through aquaporin. Biochemistry and biophysics reports 2016; 5: 353-8. https://doi.org/10.1016/j.bbrep.2016.01.002
[10] Ali AF, Cosemi E, Kamel S, Mohammed S, Elhefnawy M, Farid L, Shaker S. Miracle of Zamzam water: the effect on human endometrial aquaporin. IWTC 2009; 13: 1515-20
[11] Craig L. Ramsey Biologically Structured Water (BSW) - A Review (Part 2): Redox Biology, Plant Resilience, SW Drinking Water Types, BSW Water and Aging, BSW Water and Immunity. Journal of Basic & Applied Sciences, 2023, 19: 207-229. DOI: https://doi.org/10.29169/1927-5129.2023.19.17
[12] Pollack G. The Fourth Phase of Water: Beyond Solid, Liquid, and Vapor. Ebner & Sons; Seattle, WA, USA: 2013.
[13] Karu TI. Mitochondrial signaling in mammalian cells activated by red and near IR radiation. Photochemistry and Photobiology 2008; 84(5): 1091-9. https://doi.org/10.1111/j.1751-1097.2008.00394.x
[14] Alrais A. F., Alfadeel E. A. A., Hamouda S. A. Schumann Resonances and Their Potential Applications: a Review Article. Mordovia University Bulletin. 2017; 4(27):476‒489. DOI: 10.15507/0236- 2910.027.201704.476-489
[15] Craig L. Ramsey Biologically Structured Water (BSW) - A Review (Part 1): Structured Water (SW) Properties, BSW and Redox Biology, BSW and Bioenergetics. Journal of Basic & Applied Sciences, 2023, 19, 174-201.
[16] Montagnier L, Del Giudice E, Aïssa J, Lavallee C, Motschwiller S, Capolupo A, Polcari A, Romano P, Tedeschi A, Vitiello G. Transduction of DNA information through water and electromagnetic waves. Electromagnetic Biology and Medicine 2015; 34(2): 106-12. https://doi.org/10.3109/15368378.2015.1036072
[17] Montagnier L. DNA between Physics and Biology. 60th Lindau Nobel Laureate Meeting. Available at: http://www.mediatheque.lindau-nobel.org/videos/31544/dna-between-physics-and-biology-2010/laureate-montagnier
[18] S. Tsuyoshi Ohnishi1,* and Tomoko Ohnishi. The Nishino Breathing Method and Ki-energy (Life-energy): A Challenge to Traditional Scientific Thinking. Advance Access Publication. eCAM 2006;3(2)191–200 doi:10.1093/ecam/nel004
[19] Voeikov VL Biological oxidation: over a century of hardship for the concept of active oxygen. Cell Mol Biol 2005; 51: 663-75.
[20] Tuszynski JA. From quantum chemistry to quantum biology: A path toward consciousness. Journal of Integrative Neuroscience 2020; 19(4): 687-700. https://doi.org/10.31083/j.jin.2020.04.393
[21] Li T, Tang H, Zhu J, Zhang JH The finer scale of consciousness: quantum theory. Annals of Translational Medicine 2019; 7(20). https://doi.org/10.21037/atm.2019.09.09
[22] Marais A, Adams B, Ringsmuth AK, Ferretti M, Gruber JM, Hendrikx R, Schuld M, Smith SL, Sinayskiy I, Krüger TP, Petruccione F. The future of quantum biology. Journal of the Royal Society Interface 2018; 15(148): 20180640. https://doi.org/10.1098/rsif.2018.0640
[23] Kim Y, Bertagna F, D'souza EM, Heyes DJ, Johannissen LO, Nery ET, Pantelias A, Sanchez-Pedreño Jimenez A, Slocombe L, Spencer MG, Al-Khalili J. Quantum biology: An update and perspective. Quantum Reports 2021; 3(1): 80-126. https://doi.org/10.3390/quantum3010006
[24] Voeikov VL. Reactive oxygen species—(ROS) pathogens or sources of vital energy? Part 1. ROS in normal and pathologic physiology of living systems. Journal of Alternative & Complementary Medicine 2006; 12(2): 111-8. https://doi.org/10.1089/acm.2006.12.111
[25] Voeikov VL. Reactive oxygen species (ROS): pathogens or sources of vital energy? Part 2. Bioenergetic and bioinformational functions of ROS. Journal of Alternative & Complementary Medicine 2006; 12(3): 265-70. https://doi.org/10.1089/acm.2006.12.265
[26] Hwang SG, Lee HS, Lee BC, Bahng G. Effect of antioxidant water on the bioactivities of cells. International journal of cell biology 2017; 2017. https://doi.org/10.1155/2017/1917239.
[27] Ünal A, Bozkaya U. Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics. The Journal of Chemical Physics 2018; 148(12). https://doi.org/10.1063/1.5025233
[28] Lin MF, Singh N, Liang S, Mo M, Nunes JP, Ledbetter K, Yang J, Kozina M, Weathersby S, Shen X, Cordones AA. Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water. Science 2021; 374(6563): 92-5. https://doi.org/10.1126/science.abg3091
[29] Xing D, Meng Y, Yuan X, Jin S, Song X, Zare RN, Zhang X. Capture of hydroxyl radicals by hydronium cations in water microdroplets. Angewandte Chemie 2022; 134(33): e202207587. https://doi.org/10.1002/ange.202207587


17:25 POSTERS/EXHIBITION - Ballroom Foyer