FLOGEN Logo
In Honor of Nobel Laureate Dr. Avram Hershko
SIPS 2024 logo
SIPS 2024 takes place from October 20 - 24, 2024 at the Out of the Blue Resort in Crete, Greece

Honoree Banner
PROGRAM NOW AVAILABLE - CLICK HERE

More than 500 abstracts submitted from over 50 countries


Featuring many Nobel Laureates and other Distinguished Guests

ADVANCED PROGRAM

Orals | Summit Plenaries | Round Tables | Posters | Authors Index


Click here to download a file of the displayed program

Oral Presentations


8:00 SUMMIT PLENARY - Marika A Ballroom
12:00 LUNCH/POSTERS/EXHIBITION - Red Pepper

SESSION:
GeochemistryMonPM1-R2
Ross International Symposium (3rd Intl. Symp. on Geochemistry for Sustainable Development)
Mon. 21 Oct. 2024 / Room: Marika B1
Session Chairs: Alexandra Navrotsky; Student Monitors: TBA

13:20: [GeochemistryMonPM102] OS Plenary
HIGH PRESSURE HIGH PROFIT
Alexandra Navrotsky1
1Arizona State University, Phoenix, United States
Paper ID: 31 [Abstract]

Composition, temperature and pressure are the main knobs to turn in synthesizing, characterizing, and using new materials. Though the geologic and planetary science communities have embraced pressure as a natural and necessary variable, it has been underutilized in materials research.  FORCE, the Facility for Open Research in a Compressed Environment, is a new initiative and laboratory at ASU, housing unique multianvil equipment and research. FORCE enables synthesis of relatively large samples over a wide pressure – temperature range   and combines both experimental and computational studies relevant to structure, bonding, and phase transitions. It is a user facility for the broad scientific community. FORCE and its capabilities will be described and several examples of current materials   research linking high pressure, thermochemistry, and important functional materials will be presented. Specifically, rare earth monoxides, metastable at ambient conditions, have been investigated, while current work focuses on sulfides, selenides, tellurides and arsenides. 

 



13:40: [GeochemistryMonPM103] OS
THERMOCHEMISTRY OF NANOSTRUCTURED TRANSITION METAL NITRIDES
Laura Bonatti1; Tamilarasan Subramani1; Kristina Lilova1; Alexandra Navrotsky2
1Arizona State University, Tempe, United States; 2Arizona State University, Phoenix, United States
Paper ID: 85 [Abstract]

Nanostructured transition metal nitrides represent a sustainable alternative to conventional materials in a variety of applications, including catalysis, coatings, electrochemical devices, and lithium-ion batteries [1]. Nanoparticles exhibit thermodynamic parameters that can differ significantly from those of bulk materials due to the decrease in dimension [2] and dependence of energetic stability on the surface energy. The investigation of how the thermodynamic parameters of transition metal nitrides differ between bulk and nanoparticles provides the foundation for optimizing these materials for diverse applications. However, compared to other properties (e.g., magnetic, conductive, electronic) that have been measured, thermodynamic investigation is still in its nascent stages. In this study, we employ high temperature oxidative melt solution calorimetry [3] and differential scanning calorimetry to ascertain thermodynamic properties (enthalpy of formation, surface energetics and enthalpy of decomposition) and to identify and discuss stability differences between bulk and nanophases as well as trends among different transition metal (Ti, Fe, Co, and Ni) nitride phases.

References:
[1] Ashraf, I., Rizwan, S., & Iqbal, M. (2020). A comprehensive review on the synthesis and energy applications of nano-structured metal nitrides. Frontiers in Materials, 7, 181.
[2] Navrotsky, A. (2001). Thermochemistry of nanomaterials. Reviews in mineralogy and geochemistry, 44(1), 73-103.
[3] Navrotsky, A. (2014). Progress and new directions in calorimetry: A 2014 perspective. Journal of the American Ceramic Society, 97(11), 3349-3359.


14:20 POSTERS/EXHIBITION - Ballroom Foyer

SESSION:
GeochemistryMonPM2-R2
Ross International Symposium (3rd Intl. Symp. on Geochemistry for Sustainable Development)
Mon. 21 Oct. 2024 / Room: Marika B1
Session Chairs: Megan Householder; Larissa Dobrzhinetskaya; Student Monitors: TBA

14:25: [GeochemistryMonPM205] OS
SURFACE ENERGY OF AMORPHOUS ENSTATITE AND ITS IMPLICATION FOR THE FORMATION OF SILICATE CLOUDS IN HOT JUPITER ATMOSPHERES
Megan Householder1; James Lyons2; Tamilarasan Subramani1; Kristina Lilova1; Alexandra Navrotsky3
1Arizona State University, Tempe, United States; 2Planetary Sciences Institute, Tucson, United States; 3Arizona State University, Phoenix, United States
Paper ID: 144 [Abstract]

Planets that orbit stars other than our sun are called exoplanets and over 5,500 have been confirmed in our galaxy. Hot Jupiters are a type of exoplanet that orbit very close to their star and are tidally locked, with a permanent daytime and nighttime side. Being the hottest exoplanets, they emit the most radiation and thus are a prime target for the James Webb Space Telescope. Silicates are a ubiquitous feature of aerosols on hot giant exoplanets. [1] WASP 17-b is a hot Jupiter with an orbital period of 3.7 days whose atmosphere was recently observed by James Webb Space Telescope to be dominated by quartz (SiO2) nanocrystals, although magnesium-rich silicates were expected to be seen. [2] In the brown dwarf VHS 1256-1257b, the best fit models for spectroscopic observations were clouds of enstatite (MgSiO3), forsterite (Mg2SiO4), and quartz. [3] Despite key silicate features in spectroscopy, it is not possible to determine complete atmospheric composition and cloud formation by astronomical observations alone, and particle formation in atmospheres must be modeled. Major factors in modeling atmospheres are nucleation and condensation, which are exponentially dependent on the species’ surface energy, with higher surface energies drastically hindering nucleation rates. Although the need for  reliable  surface energy measurements is evident, surface energies of several key species in hot giant exoplanets are not yet constrained by experiment. In this work, surface energies of likely exoplanet atmosphere condensates, including zinc sulfide (ZnS), crystalline, and amorphous enstatite were measured using oxide melt solution calorimetry of appropriate nanoparticles. These are then input into a nucleation code that gives nucleation rates for these species. [4,5] The surface energy of crystalline SiO2 is much lower than that of the crystalline magnesium-rich silicates, supporting the observation of silica in the atmosphere of WASP-17b, while the surface energy of amorphous enstatite is similar to that of quartz. [4,6] This suggests that initial nucleation of MgSiO3 in VHS 1256-1257b could form the amorphous phase. This research provides experimental surface energy data of high relevance to a broad range of exoplanet atmospheres.

References:
[1] Adams, D.; Gao, P.; Pater, I. de; Morley, C. V. Aggregate Hazes in Exoplanet Atmospheres. Astrophys J 2019, 874 (1), 61. https://doi.org/10.3847/1538-4357/ab074c.
[2] Grant, D.; Lewis, N. K.; Wakeford, H. R.; Batalha, N. E.; Glidden, A.; Goyal, J.; Mullens, E.; MacDonald, R. J.; May, E. M.; Seager, S.; Stevenson, K. B.; Valenti, J. A.; Visscher, C.; Alderson, L.; Allen, N. H.; Cañas, C. I.; Colón, K.; Clampin, M.; Espinoza, N.; Gressier, A.; Huang, J.; Lin, Z.; Long, D.; Louie, D. R.; Peña-Guerrero, M.; Ranjan, S.; Sotzen, K. S.; Valentine, D.; Anderson, J.; Balmer, W. O.; Bellini, A.; Hoch, K. K. W.; Kammerer, J.; Libralato, M.; Mountain, C. M.; Perrin, M. D.; Pueyo, L.; Rickman, E.; Rebollido, I.; Sohn, S. T.; Marel, R. P. van der; Watkins, L. L. JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b. Astrophys J Lett 2023, 956 (2), L29. https://doi.org/10.3847/2041-8213/ACFC3B.
[3] Miles, B. E.; Biller, B. A.; Patapis, P.; Worthen, K.; Rickman, E.; Hoch, K. K. W.; Skemer, A.; Perrin, M. D.; Whiteford, N.; Chen, C. H.; Sargent, B.; Mukherjee, S.; Morley, C. V.; Moran, S. E.; Bonnefoy, M.; Petrus, S.; Carter, A. L.; Choquet, E.; Hinkley, S.; Ward-Duong, K.; Leisenring, J. M.; Millar-Blanchaer, M. A.; Pueyo, L.; Ray, S.; Sallum, S.; Stapelfeldt, K. R.; Stone, J. M.; Wang, J. J.; Absil, O.; Balmer, W. O.; Boccaletti, A.; Bonavita, M.; Booth, M.; Bowler, B. P.; Chauvin, G.; Christiaens, V.; Currie, T.; Danielski, C.; Fortney, J. J.; Girard, J. H.; Grady, C. A.; Greenbaum, A. Z.; Henning, T.; Hines, D. C.; Janson, M.; Kalas, P.; Kammerer, J.; Kennedy, G. M.; Kenworthy, M. A.; Kervella, P.; Lagage, P.-O.; Lew, B. W. P.; Liu, M. C.; Macintosh, B.; Marino, S.; Marley, M. S.; Marois, C.; Matthews, E. C.; Matthews, B. C.; Mawet, D.; McElwain, M. W.; Metchev, S.; Meyer, M. R.; Molliere, P.; Pantin, E.; Quirrenbach, A.; Rebollido, I.; Ren, B. B.; Schneider, G.; Vasist, M.; Wyatt, M. C.; Zhou, Y.; Briesemeister, Z. W.; Bryan, M. L.; Calissendorff, P.; Cantalloube, F.; Cugno, G.; Furio, M. De; Dupuy, T. J.; Factor, S. M.; Faherty, J. K.; Fitzgerald, M. P.; Franson, K.; Gonzales, E. C.; Hood, C. E.; Howe, A. R.; Kraus, A. L.; Kuzuhara, M.; Lagrange, A.-M.; Lawson, K.; Lazzoni, C.; Liu, P.; Llop-Sayson, J.; Lloyd, J. P.; Martinez, R. A.; Mazoyer, J.; Quanz, S. P.; Redai, J. A.; Samland, M.; Schlieder, J. E.; Tamura, M.; Tan, X.; Uyama, T.; Vigan, A.; Vos, J. M.; Wagner, K.; Wolff, S. G.; Ygouf, M.; Zhang, X.; Zhang, K.; Zhang, Z. The JWST Early-Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Μm Spectrum of the Planetary-Mass Companion VHS 1256–1257 b. Astrophys J Lett 2023, 946 (1), L6. https://doi.org/10.3847/2041-8213/ACB04A.
[4] Householder, M. A.; Subramani, T.; Lilova, K.; Lyons, J. R.; Stroud, R. M.; Navrotsky, A. Calorimetric Measurement of the Surface Energy of Enstatite, MgSiO3. The Journal of Physical Chemistry C 2023, 127 (40), 20106–20112. https://doi.org/10.1021/ACS.JPCC.3C04211.
[5] Subramani, T.; Lilova, K.; Householder, M.; Yang, S.; Lyons, J.; Navrotsky, A. Surface Energetics of Wurtzite and Sphalerite Polymorphs of Zinc Sulfide and Implications for Their Formation in Nature. Geochim Cosmochim Acta 2022, 340, 99–107. https://doi.org/10.1016/j.gca.2022.11.003.
[6] Chen, S.; Navrotsky, A. Calorimetric Study of the Surface Energy of Forsterite. American Mineralogist 2010, 95 (1), 112–117. https://doi.org/10.2138/AM.2010.3339.


15:45 COFFEE BREAK/POSTERS/EXHIBITION - Ballroom Foyer