ORALS
SESSION: IronTueAM-R2
| Assis International Symposium (9th Intl. Symp. on Advanced Sustainable Iron & Steel Making) |
Tue. 28 Nov. 2023 / Room: Dreams 2 | |
Session Chairs: Tateo Usui; Marcos De Campos; Session Monitor: TBA |
12:00: [IronTueAM02] OS Keynote
THE STATE-OF-THE-ART GAS CARBURIZING METHOD OF SOLID STEEL FOR MINIMIZING BOTH HYDROCARBON USE AND CO2 EMISSION BY SELECTIVE REMOVAL OF H2 FROM THE FURNACE Tateo Usui1 ; Tomoyuki Mizukoshi
2 ; Yujiro Yokoyama
3 ; Hideaki Hoshino
3 ; Itsuo Ishigami
4 ; Hirokazu Konishi
5 ;
1Osaka University, Ibaraki, Japan;
2Seibu Metal Heat Treatment Industry Cooperative Association, Osaka, Japan;
3Izumi Center, Osaka Research Institute of Industrial Science and Technology, Izumi, Japan;
4Osaka Prefecrure Federation of Small Business Associations, Osaka, Japan;
5Osaka University, Suita, Japan;
Paper Id: 126
[Abstract] Gas carburizing of solid steel is carried out by using a large amount of hydrocarbon in order to keep the furnace atmosphere as long as constant, because carbon from hydrocarbon is consumed for carburization of the steel surface and hydrogen remains in the furnace. In the present study, selective removal methods of H2 were surveyed and fundamental experiment was done by using Proton Conductor SrZr1-xYxO3-a , which was prepared by spark plasma sintering method; hydrogen gas was separated from wet simulated coke oven gas atmosphere at high temperature successfully. At the same time, reported method to selectively remove H2 was also applied to bench scale furnace for gas carburizing of solid steel by using gas filter module made of poli-imido fiber tube. The control of the furnace atmosphere was very important to keep it constant, which was also studied numerically as well as experimentally. Finally, selective removal of H2 from the furnace was verified experimentally and the flow rate of so-called “carrier gas” (hydrocarbons) could be reduced more than 75 % under the condition of the same quality of steel surface by the carburization treatment. As a result, exhaust gas volume could also be reduced and the burnt exhaust gas, namely, CO2 emission was minimized.
References:
[1] Yujiro Yokoyama, Tomoyuki Mizukoshi, Itsuo Ishigami and Tateo Usui: Numerical Analysis and Control of Gas Carburizing under Changes in Gas Compositions, Materials Science Forum, 522-523(2006), pp.589 - 594.
[2] Hirokazu KONISHI, Hiroshi NISHIMURA, Tateo USUI and Iwao KATAYAMA: Preparation of Proton Conductor SrZr1-xYxO3-a for Pure Hydrogen Separation in High Temperature Range (in Japanese), Journal of High Temperature Society, 34(2008)3, pp.123 - 129.
[3] Tomoyuki Mizukoshi, Yujiro Yokoyama, Hideaki Hoshino, Itsuo Ishigami and Tateo Usui: New Gas Carburizing Method for Minimizing CO2 Emission by Saving Resources and Selective Removal of H2 in Furnace (in Japanese), Journal of High Temperature Society, 35(2009)1, pp.50 - 54.
[4] Tomoyuki Mizukoshi, Hideaki Hoshino, Yujiro Yokoyama, Itsuo Ishigami and Tateo Usui: Numerical Analysis on Carbon Concentration Profiles of Gas Carburized Low Alloy Steel under Fluctuating Atmosphere, NETSU SHORI (Journal of the Japan Society for Heat Treatment), 49(2009), Special Issue, pp.319 - 322.
[5] Yujiro Yokoyama, Tomoyuki Mizukoshi, Itsuo Ishigami and Tateo Usui: Relationship between Vacuum Carburizing Conditions and Surface Carbon Concentration of SNCM815, NETSU SHORI, 49(2009), Special Issue, pp. 323 - 326.
[6] Hirokazu KONISHI, Takuya MATSUMOTO, Tateo USUI and Tomoyuki MIZUKOSHI: Characteristic of Proton Conductor Prepared by Spark Plasma Sintering in the Simulated Coke Oven Gas, Tetsu-to-Hagané (in Japanese), 96 (2010)10, pp.629 - 635.
[7] Yujiro Yokoyama, Tomoyuki Mizukoshi, Itsuo Ishigami and Tateo Usui: Development and Verification of Vacuum Carburizing Model Considering Graphite Deposition on Low Alloy Steel (in Japanese), Report of Technology Research Institute of Osaka Prefecture, No.23 (2009), pp.65 - 71.
[8] Tomoyuki Mizukoshi, Yujiro Yokoyama, Hideaki Hoshino, Itsuo Ishigami, Hirokazu Konishi and Tateo Usui: Influence of Alloying Elements on Carburizing Reaction Rate Constant of Low Alloy Steel in CO-CO2-N2 Atmosphere, Proceedings of The International Symposium on Ironmaking for Sustainable Development 2010 (ISISD 2010), (January, 2010, Osaka, Japan), pp.165 - 168, ISIJ (The Iron and Steel Institute of Japan).
[9] Hideaki Hoshino, Tomoyuki Mizukoshi, Yujiro Yokoyama, Itsuo Ishigami and Tateo Usui: Carburizing Rates of Vacuum Carburization by Acetylene Gas at 1.33 kPa, Proceedings of The International Symposium on Ironmaking for Sustainable Development 2010 (ISISD 2010), (January, 2010, Osaka, Japan), pp.169 - 172, ISIJ.
[10] Yujiro Yokoyama, Hideaki Hoshino, Tomoyuki Mizukoshi and Tateo Usui: Relationship between Vacuum Carburizing Conditions and Surface Carbon Concentration of SCM415, Proceedings of The International Symposium on Ironmaking for Sustainable Development 2010 (ISISD 2010), (January, 2010, Osaka, Japan), pp.173 - 176, ISIJ.
[11] Yujiro Yokoyama, Tomoyuki Mizukoshi, Itsuo Ishigami and Tateo Usui: Numerical Analysis and Control of Gas Carburizing under Changes in Gas Compositions, Abstracts of International Symposium on High-Temperature Oxidation and Corrosion, (November, 2005, Nara, Japan), Poster P39, ISIJ.
[12] Tomoyuki Mizukoshi, Hideaki Hoshino, Yujiro Yokoyama, Itsuo Ishigami and Tateo Usui: Numerical Analysis on Carbon Concentration Profiles of Gas Carburized Low Alloy Steel under Fluctuating Atmosphere, 17th International Federation for Heat Treatment and Surface Engineering Congress 2008 (October, 2008, Kobe, Japan), Poster P10, p.226, Japan Society for Heat Treatment.
[13] Yujiro Yokoyama, Tomoyuki Mizukoshi, Itsuo Ishigami and Tateo Usui: Relationship between Vacuum Carburizing Conditions and Surface Carbon Concentration of SNCM815, 17th International Federation for Heat Treatment and Surface Engineering Congress 2008 (October, 2008, Kobe, Japan), Poster P12, p.228, The Japan Society for Heat Treatment. [The Poster Award for 17th IFHTSE Congress 2008 (October 29, 2008)]
[14] Tomoyuki Mizukoshi, Itsuo Ishigami, Yujiro Yokoyama and Tateo Usui: For Development of Eco-friendly Carburizing Treatment Method (Part 1) - Construction and Application of Kinetics Model for Vacuum Carburizing - (in Japanese), NETSU SHORI, 50 (2010)6, pp.589 - 600.
[15] Yujiro Yokoyama, Tomoyuki Mizukoshi, Itsuo Ishigami and Tateo Usui: For Development of Eco-friendly Carburizing Treatment Method (Part 2) - Effect of Surface Graphite Deposition on Carbon Profile of Vacuum Carburized Steel - (in Japanese), NETSU SHORI, 52(2012)5, pp.257 - 262.
[16] Tomoyuki Mizukoshi, Itsuo Ishigami, Yujiro Yokoyama and Tateo Usui: For Development of Eco-friendly Carburizing Treatment Method (Part 3) - Proposal for Controlling Gas Carburizing based on Surface Reaction Rate and Diffusion of Carbon - (in Japanese), NETSU SHORI, 53(2013)6, pp.302 - 309.
[17] Tomoyuki Mizukoshi, Itsuo Ishigami, Yujiro Yokoyama and Tateo Usui: For Development of Eco-friendly Carburizing Treatment Method (Part 4) - Saving Energy and Resources in Gas Carburizing Process by Selective Removal of H2 in Furnace - (in Japanese), NETSU SHORI, 54(2014)4, pp.205 - 211.
SESSION: IronTuePM1-R2
| Assis International Symposium (9th Intl. Symp. on Advanced Sustainable Iron & Steel Making) |
Tue. 28 Nov. 2023 / Room: Dreams 2 | |
Session Chairs: Tateo Usui; Giulio Antunes De Medeiros; Session Monitor: TBA |
15:20: [IronTuePM108] OS
REDUCTION RATE ENHANCEMENT OF CARBON COMPOSITE IRON OXIDE PELLETS BY USING SEMI-CHAR OR SEMI-CHARCOAL Tateo Usui1 ; Hirokazu Konishi
2 ; Kazuhira Ichikawa
3 ; Hideki Ono
4 ; Hirotoshi Kawabata
2 ;
Paulo Assis5 ;
1Osaka University, Ibaraki, Japan;
2Osaka University, Suita, Japan;
3JFE Steel Corporation, Fukuyama, Japan;
4University of Toyama, Toyama, Japan;
5UFOP, Ouro Preto, Ouro Preto, Brazil;
Paper Id: 424
[Abstract] The exhaustion of natural resources (quantity and quality) and CO2 emission controls are becoming increasingly important in steel industry. A lot of steel engineers studied various means to decrease reducing agent at blast furnace for reduction of CO2 emissions. For example, injection of waste plastics and carbon neutral materials such as biomass into blast furnace is better alternative. Especially, biomass has novel advantage, namely, no CO2 emissions, because of carbon neutral. Production of carbon composite iron ore agglomerates having good reducibility and strength is becoming one of the most important subjects. Carbon composite iron oxide pellets using semi-char or semi-charcoal were proposed in order to enhance the reduction rate of iron oxide. The carbonization was done under a rising temperature condition until arriving at a maximum carbonization temperature Tc,max to release some part of the volatile matter included (V.M.). Starting point of reduction of carbon composite pellet using semi-charcoal produced at Tc,max = 823 K under the rising reduction-temperature condition was observed at the reduction temperature TR = 833 K, only a little higher than Tc,max (823 K), which was the aimed phenomena. As Tc,max increases, the emitted carbonization gas volume increases, while the residual V.M. decreases, and, as a whole, the total heat value of the carbonization gas emitted tends to increase monotonically.
References:
[1] Tateo Usui, Hirokazu Konishi, Kazuhira Ichikawa, Hideki Ono, Hirotoshi Kawabata, Francisco B. Pena, Matheus H. Souza, Alexandre A. Xavier and Paulo S. Assis, “Evaluation of Carbonisation Gas from Coal and Woody Biomass and Reduction Rate of Carbon Composite Pellets”, Advances in Materials Science and Engineering, Vol.2018, Article ID 3807609, 2018, pp.1-14
[2] . Konishi, T. Usui and K. Azuma, “The Preparation and Reduction Behavior of Carbon Composite Iron Oxide Pellets Using Semi-coal- char”, Tetsu-to-Hagané, 92, 2006, pp.802-808.
[3] H. Konishi, A. Yamashita and T. Usui, “Effect of Residual Volatile Matter on Reduction of Iron Oxide in Carbon Composite Pellets”, Journal of JSEM (Japanese Society for Experimental Mechanics), 8, 2008, Special Issue, pp.142-146.
[4] H. Konishi, T. Usui and A. Yamashita, “Effect of Residual Volatile Matter on Reduction Reaction between Semi-coal-char and Iron Oxide”, Tetsu-to-Hagané, 95, 2009, pp.467-472.
[5] H. Konishi, K. Ichikawa and T. Usui, “Effect of Residual Volatile Matter on Reduction of Iron Oxide in Semi-charcoal Composite Pellets”, ISIJ International, 50, 2010, pp.386-389.
[6] H. Konishi, T. Usui and T. Harada, “The Preparation and Reduction Behavior of Charcoal Composite Iron Oxide Pellets”, Journal of High Temperature Society, 34, 2008, pp.14-19.
[7] H. Konishi, S. Fujimori and T. Usui, “Reduction Behavior of Iron Oxide in Semi-charcoal Composite Pellets”, Journal of High Temperature Society, 35, 2009, pp.33-39.
[8] T. Ariyama and M. Sato, “Optimization of Ironmaking Process for Reducing CO2 Emissions in the Integrated Steel Works”, ISIJ International, 46, 2006, pp.1736-1744.
[9] M. Asanuma et al., “Development of Waste Plastics Injection Process in Blast Furnace”, ISIJ International, 40, 2000, pp.244-251.
[10] T. Ariyama, R. Murai, J. Ishii and M. Sato, “Reduction of CO2 Emissions from Integrated Steel Works and Its Subject for a Future Study”, ISIJ International, 45, 2005, pp.1371-1378.
[11] T. Matsumura, M. Ichida, T. Nagasaka and K. Kato, “Carbonization Behaviour of Woody Biomass and Resulting Metallurgical Coke”, ISIJ International, 48, 2008, pp.572-577.
[12] M. Nakano, M. Naito, K. Higuchi and K. Morimoto, “Non-spherical Carbon Composite Agglomerates: Lab-scale Manufacture and Quality Assessment”, ISIJ International, 44, 2004, pp.2079-2085.
SESSION: IronTuePM3-R2
| Assis International Symposium (9th Intl. Symp. on Advanced Sustainable Iron & Steel Making) |
Tue. 28 Nov. 2023 / Room: Dreams 2 | |
Session Chairs: José Hamilton Tavares; Session Monitor: TBA |
18:20: [IronTuePM314] OS
EFFECTS OF COMPRESSIVE STRESS ON CORRSION-PROTECTIVE QUALITY AND ITS MAINTENANCE UNDER A CORROSIVE ENVIRONMENT FOR TIN FILMS DEPOSITED BY REACTIVE HCD ION PLATING Ken'ichi Miura1 ; Itsuo Ishigami
2 ;
Tateo Usui3 ;
1Izumi Center, Osaka Research Institute of Industrial Science and Technology, Izumi, Japan;
2Osaka Prefecrure Federation of Small Business Associations, Osaka, Japan;
3Osaka University, Ibaraki, Japan;
Paper Id: 137
[Abstract] Titanium nitride films were deposited onto SUS304 substrates under various film thickness, deposition temperatures, and substrate bias voltages. Their protective quality was evaluated by electrochemical testing in accordance with the critical passivation current density (CPCD) method. Two types of tests were employed to evaluate corrosive behavior of coated substrates: a high-temperature and high-pressure corrosion test; and a measurement of the change in anodic current density with immersion time. A scanning electron microscope was used to examine surface morphology and fractured cross-sections of the films. Residual stress in the films was determined by the sin2 method. An increase in film thickness engendered high protective quality. That protective quality was improved with increasing deposition temperature; micrometerorder pores were observed on all parts of films deposited at lower deposition temperatures, whereas few pores existed on films deposited at higher temperatures. This result indicates that these pores are one factor influencing overall protective quality. A film deposited with no substrate bias voltage displayed morphology with a typical columnar-structure; it also demonstrated complete protective quality. As the bias voltage increased, protective quality deteriorated, whereas an excess increase in the bias voltage gave rise to a slightly higher protective quality. Films with lower compressive stress had only a few pores and possessed higher protective quality, suggesting that pore formation originates in compressive stress. Corrosion tests indicated that the coated substrates corroded more rapidly as compressive stress in the film increased. The effect of compressive stress on maintenance of corrosion-protective quality was treated quantitatively. The rate of increase in the exposed area of the substrate was estimated from variation of an anodic current density with immersion time. This evaluation indicates that a decrease in compressive stress contributes greatly to maintenance of protective quality.
References:
[1] Ken'ichi Miura, Itsuo Ishigami, Masato Kuno and Hiroyuki Kaneda: Grain Size Dependence of Hardness of TiN Films Deposited by Reactive HCD Ion Plating (in Japanese), Journal of Japan Institute of Metals, 59(1995), pp.303 - 311.
[2] Ken'ichi Miura, Itsuo Ishigami and Tomoyuki Mizukoshi: Effects of Preparation Conditions on Chemical Composition and Hardness of Titanium Nitride Films Prepared by Reactive HCD Ion Plating (in Japanese), Journal of Japan Institute of Metals, 63(1999), pp.949 - 958.
[3] Ken'ichi Miura, Itsuo Ishigami and Tomoyuki Mizukoshi: Mixing of Oxygen in Titanium Nitride Films Formed by Reactive HCD Ion Plating (in Japanese), Journal of Japan Institute of Metals, 64 (2000), pp.508 - 517.
[4] Ken'ichi Miura and Itsuo Ishigami: Effect of Residual Stress on Lattice Parameter and Hardness of Titanium Nitride Films Deposited by Reactive HCD Ion Plating (in Japanese), Journal of Japan Institute of Metals, 65 (2001), pp.972 - 980.
19:30 Dinner