ORALS
SESSION: NanomaterialsFriPM3-R3
| Echegoyen International Symposium (8th Intl. Symp. on Synthesis & Properties of Nanomaterials for Future Energy Demands) |
Fri. 1 Dec. 2023 / Room: Dreams 3 | |
Session Chairs: TBA Session Monitor: TBA |
17:20: [NanomaterialsFriPM317] OS
CONVERSION REACTION MECHANISM IN 2H-MOS2/MXENE HETEROSTRUCTURE TO IMPROVE THE PERFORMANCE OF NH4+-BASED ENERGY STORAGE Muhammad Sufyan Javed1 ; Xiaofeng Zhang
2 ; Weihua Han
2 ;
1Lanzhou University, Lanzhou, China;
2Lanzhou University, LanZhou, China;
Paper Id: 429
[Abstract] Ammonium ion (NH4+) based aqueous hybrid supercapacitors (AHSCs) are attracting attention due to their environmental friendliness and excellent electrochemical performance [1-2]. Two-dimensional (2D) transition metal nitrides, carbides, and/or carbonitrides (MXenes) are the best choice for AHSCs cathode materials due to excellent performance, but the self-stacking effect of two-dimensional materials limits their wide application [3]. To solve this problem, we propose to grow 2H-MoS2 nanosheets on the surface of Ti3C2Tx MXene, constructing heterostructures at the interface (HS-2H-MS@MXene). On the one hand, 2H-MoS2 nanosheets are evenly distributed and oriented perpendicularly to the MXene surface. This arrangement enhances the material's specific surface area, creating additional sites for NH4+ to reach to the MXene bone. On the other hand, the interface between the two materials forms a heterostructure that effectively prevents the recombination of charge carriers and facilitates fast redox reactions. The results show that the HS-2H-MS@MXene single electrode has a batter capacitance of 722.13 F/g at 1A/g, surprising rate capability (61.6% at 20 A/g) and excellent cycle stability of 90.1 % (after 5,000 cycles at 10 A/g), outperforming 2H-MoS2 and the pristine MXene. Using activated carbon (AC) as the anode to assemble AHSC (HS-2H-MS@MXene//AC), it provides aspecific energy of 51.1 Wh/kg at 750.6 W/kg. It maintains an ultra-high capacitance of 95.6% after 10,000 charge/discharge cycles. In addition, density function theory (DFT) results show that the HS-2H-MS@MXene (Tx=O) electrode possesses higher conductivities. The calculated band energies, adsorption energies (Eads), and diffusion barriers proved the enhanced conductivities of the HS-2H-MS@MXene electrode. This study could potentially introduce a novel concept for the advancement of high-performance cathode materials in the context of AHSCs.
References:
[1] Javed, Muhammad Sufyan, Xiaofeng Zhang, Salamat Ali, Syed Shoaib Ahmad Shah, Awais Ahmad, Iftikhar Hussain, Shahid Hussain et al. "Boosting the energy storage performance of aqueous NH4+ symmetric supercapacitor based on the nanostructured molybdenum disulfide nanosheets." Chemical Engineering Journal 471 (2023): 144486.
[2] Pan, Y., Yuan, L., Liu, L., Fang, W., Hou, Y., Fu, L. and Wu, Y., 2023. Critical Advances of Aqueous Rechargeable Ammonium Ion Batteries. Small Structures, p.2300201.
[3] Yang, Li, Wei Zheng, Joseph Halim, Johanna Rosen, ZhengMing Sun, and Michel W. Barsoum. "A Highly Reversible Aqueous Ammonium‐Ion Battery based on α‐MoO3/Ti3C2Tz Anodes and (NH4) xMnO2/CNTs Cathodes." Batteries & Supercaps 6, no. 3 (2023): e202200432.
SESSION: NanomaterialsFriPM3-R3
| Echegoyen International Symposium (8th Intl. Symp. on Synthesis & Properties of Nanomaterials for Future Energy Demands) |
Fri. 1 Dec. 2023 / Room: Dreams 3 | |
Session Chairs: TBA Session Monitor: TBA |
17:45: [NanomaterialsFriPM318] OS
BAND ENGINEERING IN TI2N/TI3C2TX-MXENE INTERFACE LEADS TO ENHANCE THE PERFORMANCE OF AQUEOUS NH4+-ION HYBRID SUPERCAPACITORS Xiaofeng Zhang1 ; Muhammad Sufyan Javed
2 ; Weihua Han
1 ;
1Lanzhou University, LanZhou, China;
2Lanzhou University, Lanzhou, China;
Paper Id: 430
[Abstract] The aqueous hybrid supercapacitor (AHSC) based on ammonium ion (NH4+) is an interesting energy storage device with excellent properties. However, the scarcity of appropriate and effective cathode materials limited its practicality. Two-dimensional (2D) transition metal nitrides, carbides, and/or carbonitrides (MXenes) show potential as cathode materials, but their low capacitance also limits their applicability. Here, we synthesized N-functionalized 2D MXene (Ti3C2Tx) with Ti2N interface engineering (Ti2N/Ti3C2Tx), which displayed not only superior capacitance and rate capability but also a cycling stability then pristine Ti3C2Tx. Ex-situ XRD and XPS were used to study the fast transport of electrons/ions and its charge storage mechanism at the interface of Ti2N/Ti3C2Tx. Furthermore, density functional theory (DFT) calculations were employed to validate the superior conductivity at the interface of the Ti2N/Ti3C2Tx(Tx = OH) electrode. Moreover, AHSC was assembled with the Ti2N/Ti3C2Tx as cathode and activated carbon as anode possesses outstanding energy storage performance. This study not only elucidates the charge storage process of Ti2N/Ti3C2Tx but also provide new insights for designing novel cathode materials for energy storage devices.
SESSION: NanomaterialsAM-Rpending
| Echegoyen International Symposium (8th Intl. Symp. on Synthesis & Properties of Nanomaterials for Future Energy Demands) |
/ Room: | |
Session Chairs: TBA Session Monitor: TBA |
: [NanomaterialsAM] OS
CONVERSION REACTION MECHANISM IN 2H-MOS2/MXENE HETEROSTRUCTURE TO IMPROVE THE PERFORMANCE OF NH4+-BASED ENERGY STORAGE Muhammad Sufyan Javed1 ;
1Lanzhou University, Lanzhou, China;
Paper Id: 446
[Abstract] Conversion reaction mechanism in 2H-MoS2/MXene heterostructure to improve the performance of NH4+-based energy storageMuhammad Sufyan Javeda,*, Xiaofeng Zhanga, Weihua HanaaSchool of Physical Science and Technology, Lanzhou University, Lanzhou 730000, ChinaE-mail addresses: muhammadsj@lzu.edu.cn (Dr. Javed)Keywords: Aqueous hybrid supercapacitors, 2H-MoS2, Ti3C2Tx, heterostructure, DFT, NH4+, pseudocapacitive AbstractAmmonium ion (NH4+) based aqueous hybrid supercapacitors (AHSCs) are attracting attention due to their environmental friendliness and excellent electrochemical performance [1-2]. Two-dimensional (2D) transition metal nitrides, carbides, and/or carbonitrides (MXenes) are the best choice for AHSCs cathode materials due to excellent performance, but the self-stacking effect of two-dimensional materials limits their wide application [3]. To solve this problem, we propose to grow 2H-MoS2 nanosheets on the surface of Ti3C2Tx MXene, constructing heterostructures at the interface (HS-2H-MS@MXene). On the one hand, 2H-MoS2 nanosheets are evenly distributed and oriented perpendicularly to the MXene surface. This arrangement enhances the material's specific surface area, creating additional sites for NH4+ to reach to the MXene bone. On the other hand, the interface between the two materials forms a heterostructure that effectively prevents the recombination of charge carriers and facilitates fast redox reactions. The results show that the HS-2H-MS@MXene single electrode has a batter capacitance of 722.13 F/g at 1A/g, surprising rate capability (61.6% at 20 A/g) and excellent cycle stability of 90.1 % (after 5,000 cycles at 10 A/g), outperforming 2H-MoS2 and the pristine MXene. Using activated carbon (AC) as the anode to assemble AHSC (HS-2H-MS@MXene//AC), it provides aspecific energy of 51.1 Wh/kg at 750.6 W/kg. It maintains an ultra-high capacitance of 95.6% after 10,000 charge/discharge cycles. In addition, density function theory (DFT) results show that the HS-2H-MS@MXene (Tx=O) electrode possesses higher conductivities. The calculated band energies, adsorption energies (Eads), and diffusion barriers proved the enhanced conductivities of the HS-2H-MS@MXene electrode. This study could potentially introduce a novel concept for the advancement of high-performance cathode materials in the context of AHSCs.
References:
[1] Javed, Muhammad Sufyan, Xiaofeng Zhang, Salamat Ali, Syed Shoaib Ahmad Shah, Awais Ahmad, Iftikhar Hussain, Shahid Hussain et al. "Boosting the energy storage performance of aqueous NH4+ symmetric supercapacitor based on the nanostructured molybdenum disulfide nanosheets." Chemical Engineering Journal 471 (2023): 144486.
[2] Pan, Y., Yuan, L., Liu, L., Fang, W., Hou, Y., Fu, L. and Wu, Y., 2023. Critical Advances of Aqueous Rechargeable Ammonium Ion Batteries. Small Structures, p.2300201.
[3] Yang, Li, Wei Zheng, Joseph Halim, Johanna Rosen, ZhengMing Sun, and Michel W. Barsoum. "A Highly Reversible Aqueous Ammonium‐Ion Battery based on α‐MoO3/Ti3C2Tz Anodes and (NH4) xMnO2/CNTs Cathodes." Batteries & Supercaps 6, no. 3 (2023): e202200432.