ORALS
SESSION: NanotechnologyWedAM-R7
| International Symposium on Nanotechnology for Sustainable Development |
Wed. 30 Nov. 2022 / Room: Andaman 2 | |
Session Chairs: Paulo Assis; ATANU NASKAR; Session Monitor: TBA |
11:55: [NanotechnologyWedAM02] OS
Lactobacillus derived extracellular vesicles coated MoS2-ZnO nanoplatform: A synergistic and biocompatible antibacterial agent against Staphylococcus species Atanu
Naskar1 ; Hyejin
Cho
1 ; Kwang-sun
Kim
1 ;
1Pusan National University, Busan, South Korea;
Paper Id: 369
[Abstract] The rapid emergence of antibiotic resistance has weakened the efficacy of conventional antibiotics where urgent actions are necessary to address this issue [1]. Nanoparticles have been increasingly explored to nullify this antibiotic resistance and eliminate bacterial cell [2]. However, toxicity issue of nanoparticles coupled with its inability to bypass bacterial cell membrane remain an alarming issue. In this regard, bacteria-derived extracellular vesicle (EV) cloaked nanoparticles can resolve all the mentioned issues due to its natural cellular functions and potential for various biomedical applications [3]. Herein, we report a fabrication of a novel biocompatible anti-Stapylococcus nanoplatform MZL, in which MoS2-ZnO (MZ) nanocomposite (core) was camouflaged with Lactobacillus paracasei-derived EVs (shell) (L). A low-temperature solution synthesis method was utilized to prepare ZnO nanoparticles that were immobilized onto PEG functionalized MoS2 nanosheets. The resulting MZ nanocomposite was characterized using X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Moreover, the MZL was characterized with hydrodynamic sizes, surface zeta potentials, SDS-PAGE gel analysis. The MZL nanoplatform showed excellent synergistic antibacterial activity against S. aureus compared to other samples and completely eradicates bacteria even at 6.25 µg mL-1 concentration. Additionally, the MZL also showed good biocompatibility. Overall, the proposed EV-coated nanoplatform showed excellent efficacy for antibacterial activity compared to other conventional antibiotic and has the potential for future in vivo application.
References:
[1] Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018, 11, 1645-1658.
[2] Mamun MM, Sorinolu AJ, Munir M, Vejerano EP. Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance. Front Chem. 2021, 9, 687660.
[3] Naskar A, Cho H, Lee S, Kim KS. Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics. 2021, 13(11), 1887.