The SAE/AISI 1045 steel is one of the structural steels widely used in the automotive sector to several key components such as connecting shafts, axles etc. It is also used in petrochemicals and power generation units. In material science and engineering; four interdependent parameters are of paramount importance which includes; process structure, properties and performance. Among all factors the structure / microstructure is of utmost importance since it governs the properties at large. For example it depends on the size, shape, and distribution of various micro constituents therein. Therefore, the main aim of this study is to investigate the response of the microstructures (structure-property correlation) upon application of heat treatment processes such as annealing, normalizing, tempering and hardening. This was followed by the characterization such as spectrometry analysis was carried out for chemical composition of the steel. While impact and hardness tests were also conducted. Results suggest an improved toughness and hardness when tempering temperature was reduced. This is attributed to decreased grain sizes of micro constituents upon such treatment. Interestingly one more aspect was noted that the chemical composition changes slightly during heat treatment processes which might be in range of standard. However, it could affect the surface properties of steel during service.
Keywords:
Ferro-Alloys; Metallurgy; Metals; Steel; Sustainability; Treatment;References:
K. Funatani and G. Totten, "Present Accomplishments and Future Challenges of Quenching Technology," in Proceedings of the 6th International Federation of Heat treatment and Surface Engineering Congress, IFHTSE, Kyongju, Korea, 1997, pp. 20-27.
[2] D. Fadare, T. Fadara, and O. Akanbi, "Effect of heat treatment on mechanical properties and microstructure of NST 37-2 steel," 2011.
[3] T. Gladman, D. Dulieu, and I. McIvor, "Microalloying 75 Symposium," Washington, DC, pp. 25-34, 1977.
[4] P. N. Rao, Manufacturing technology vol. 1: Tata McGraw-Hill Education, 2013.
[5] A. Çalik, "Effect of cooling rate on hardness and microstructure of AISI 1020, AISI 1040 and AISI 1060 Steels," International journal of Physical sciences, vol. 4, pp. 514-518, 2009.
[6] S. Sankaran, V. S. Sarma, and K. Padmanabhan, "Low cycle fatigue behavior of a multiphase microalloyed medium carbon steel: comparison between ferrite–pearlite and quenched and tempered microstructures," Materials Science and Engineering: A, vol. 345, pp. 328-335, 2003.
[7] G. Gopalkrishna, R. B. Gurumurthy, and M. Davanageri, "Heat treatment and mechanical characterization of En8 steel," in AIP Conference Proceedings, 2019, p. 050005.
[8] S. Rahman, K. E. Karim, and M. H. S. Simanto, "Effect of Heat Treatment on Low Carbon Steel: An Experimental Investigation," in Applied Mechanics and Materials, 2017, pp. 7-12.
[9] C. M. Moleejane, "An experimental investigation of the effect of microstructural features on mechanical properties of EN8 steel," Cape Peninsula University of Technology, 2009.
[10] M. B. Ndaliman, "An assessment of mechanical properties of medium carbon steel under different quenching media," AU JT, vol. 10, pp. 100-104, 2006.
[11] S. Harisha, S. Sharma, U. A. Kini, and M. G. Shankar, "Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels," in MATEC Web of Conferences, 2018, p. 02008.
[12] T. Senthilkumar and T. K. Ajiboye, "Effect of heat treatment processes on the mechanical properties of medium carbon steel," Journal of Minerals & Materials Characterization & Engineering, vol. 11, pp. 143-152, 2012.
[13] I. Akhyar and M. Sayuti, "Effect of heat treatment on hardness and microstructures of AISI 1045," in Advanced Materials Research, 2015, pp. 575-579.
[14] T. B. Massalski, "Binary alloy phase diagrams," ASM international, vol. 3, p. 2874, 1992.
[15] G. F. Vander Voort, S. R. Lampman, B. R. Sanders, G. J. Anton, C. Polakowski, J. Kinson, et al., "ASM handbook," Metallography and microstructures, vol. 9, pp. 44073-0002, 2004.
[16] N. M. Ismail, N. A. A. Khatif, M. A. K. A. Kecik, and M. A. H. Shaharudin, "The effect of heat treatment on the hardness and impact properties of medium carbon steel," in IOP Conference Series: Materials Science and Engineering, 2016, p. 012108. The quaternary Fe-Ni-Co-Cu system is a basic system for many industrial alloys, including currently actively developing alloys with high entropy of mixing [1]. The study of the formation of copper-nickel deposits, optimization of the processes in metallurgy of copper, nickel and cobalt, the production of new compounds with various properties have a physicochemical basis and can be solved through obtaining the accurate and reliable information on phase equilibriums within the four-component Fe-Ni-Cu-S and Fe-Ni-Co-S systems as well as their ternary boundary systems [2-4].
We had elaborated 3D computer models for T-x-y diagrams of real systems and for their prototypes with the expanded borders between the phase regions and afterwards we have printed 3D-puzzles of the exploded phase diagrams with the phase regions and with the clusters of phase regions as its elements.
After the verifying of information on the bounding ternary systems, the assembling of the four-dimensional T-x-y-z diagrams has been completed. The methodology, which has been successfully developed by the authors for a long time, includes a comprehensive approach implemented in several stages: 1) to develop a prototype (4D computer model) of T-x-y-z diagram for a four-component system, based on knowledge about boundary systems and basic phase interactions within the volume of the system under study; 2) to obtain sufficient and reliable experimental data in a wide range of concentrations and temperatures; 3) to refine the T-x-y-z diagram prototype of the study system, taking into account the experimental results obtained.
This work was been performed under the program of fundamental research SB RAS (project 0270-2021-0002).
Keywords:
Ferro-Alloys; Metallurgy; Technology; Phase Diagrams; Computer SimulationReferences:
1. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I., Sineva S.I., Starykh R.V., Novozhilova O.S. High-Temperature Area of the Fe-Ni-Co-Cu Diagram: Experimental Study and Computer Design // Journal of Phase Equilibria & Diffusion. 2021; doi: https://doi.org/10.1007/s11669-021-00863-3.
2. Lutsyk V.I., Vorob'eva V.P., Zelenaya A.E. 3D computer model of the Ni-Cu-NiS-Cu2S Subsystem T-x-y diagram above 575oC // Russian Journal of Physical Chemistry. 2019. V. 93. No 13. P. 2593-2599.
3. Lutsyk, Vorob'eva V.P., Zelenaya A.E., Lamueva M.V. Т-х-у 3D Computer Model of the Co-Cu-CoS-Cu2S Subsystem T-x-y Diagram Above 800oC // Journal of Mining and Metallurgy. Section B: Metallurgy. 2021; doi: http://dx.doi.org/10.2298/JMMB1.
4. Lutsyk V.I., Vorob'eva V.P. 3D Computer Models of the T-x-y Diagrams, Forming the Fe-Ni-Co-FeS-NiS-CoS Subsystem // Russian Journal of Physical Chemistry. 2017. V. 91. No 13. P. 2593-2599.