ORALS
SESSION: AdvancedMaterialsFriPM1-R2
| 5th Intl. Symp. on New and Advanced Materials and Technologies for Energy, Environment and Sustainable Development |
Fri Oct, 25 2019 / Room: Leda (99/Mezz. F) | |
Session Chairs: Lev Rapoport; Teofilo Rojo; Session Monitor: TBA |
14:50: [AdvancedMaterialsFriPM107] Invited
Advanced Materials for Na-Ion Batteries: A Promising Technology Nicholas
Drewett
1 ; Nagore
Ortiz Vitoriano
1 ; Elena
Gonzalo
1 ; Galceran
Montserrat
1 ; Damien
Saurel
1 ; Miguel Angel
Munoz Marquez
1 ; Juan Luis
Gomez Camer
1 ;
Teofilo
Rojo1 ;
1CIC energiGUNE, Vitoria-Gasteiz, Spain;
Paper Id: 170
[Abstract] As modern society's demands for energy storage technologies increases, it becomes necessary to develop new approaches to meeting the challenges of the future. One of the most promising areas of current research and development is that of sodium ion batteries (SIB) which potentially offer, in comparison to existing technologies, low cost, environmentally friendly technologies from earth abundant resources. While (SIBs) have many potential applications, they are particularly well suited to stationary storage.[1] In this work, we will offer an overview of SIB technology before exploring key advances and highlighting important factors affecting their properties. In order to do this, we will discuss SIBs in terms of their three most significant components: anodes, electrolytes, and cathodes.
SIB anodes are mainly based on hard carbon materials, due to their attractive combination of low cost and high energy density, though there has also been interest in other systems (e.g. intermetallic alloying materials and metal oxides), as well as interest in exploiting specific electrolyte co-solvation effects so as to enable the use of graphite.[2,4] The SIB research community typically uses organic electrolytes analogous to those developed for lithium ion batteries (LIBs) to exploit their analogous natures. Recently, however, there has also been increasing interest in developing new electrolytes specifically tailored to SIBs, such as optimized liquid and solid electrolytes.[5,6] At the present time, cathodes are one of the most explored (SIB) components - with a plethora of options to choose from, including prussian blue and organic materials. The most promising, however, are polyanionic and layered materials because of their good combinations of electrochemical performance, low cost, stability and available constituents.[1,7,8]
Although interest in SIB technology is only relatively new, when compared to LIBs it has been already developed at the prototyping and demonstrators' levels. A general overview of the most interesting electrode and electrolyte materials for Na-ion batteries - with a strong focus on those related to the current prototypes - will be presented. By examining this topic in detail, we will demonstrate the considerable potential of this new technology, and highlight some of the most promising opportunities for developing new and improved SIB technologies.
References:
[1] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M.H. Han, T. Rojo, Energy Environ. Sci. 6 (2013) 2312-2337.
[2] B. Jache, J.O. Binder, T. Abe, P. Adelhelm, Phys. Chem. Chem. Phys. 18 (2016) 14299-14316.
[3] M.A. Muñoz-Márquez, D. Saurel, J.L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, T. Rojo, Adv. Energy Mater. 7 (2017) 1700463.
[4] D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li, T. Rojo, Adv. Energy Mater. 8 (2018) 1703268.
[5] C. Bommier, X. Ji, Small. 14 (2018) 1703576.
[6] W. Hou, X. Guo, X. Shen, K. Amine, H. Yu, J. Lu, Nano Energy. 52 (2018) 279-291.
[7] N. Ortiz-Vitoriano, N.E. Drewett, E. Gonzalo, T. Rojo, Energy Environ. Sci. 10 (2017) 1051-1074.
[8] E. Gonzalo, N. Ortiz-Vitoriano, N.E. Drewett, B. Acebedo, J.M. López del Amo, F.J. Bonilla, T. Rojo, J. Power Sources. 401 (2018) 117-125.
SESSION: ChemistryFriPM2-R9
| Tressaud International Symposium on Solid State Chemistry for Applications and Sustainable Development |
Fri Oct, 25 2019 / Room: Aphrodite A (100/Gr. F) | |
Session Chairs: Jean-Luc ADAM; Thierry Loiseau; Session Monitor: TBA |
15:55: [ChemistryFriPM209] Keynote
Sodium manganese-rich layered oxides (NaTMO2): a rational approach to cathode material development Nicholas
Drewett
1 ; Elena
Gonzalo
1 ; Juan Miguel
Lopez Del Amo
1 ; Nagore
Ortiz Vitoriano
1 ; Begona
Acebedo
1 ; Laura
Acebo
1 ; Galceran
Montserrat
1 ;
Teofilo
Rojo1 ;
1CIC energiGUNE, Vitoria-Gasteiz, Spain;
Paper Id: 169
[Abstract] Sodium ion Batteries (SIBs) offer a strong alternative to existing battery technologies, particularly in the field of stationary storage due to their potentially low cost, and natural abundant precursors.[1,2] One key component of an SIB is the cathode, the nature of which is critical to its performance. Sodium layered oxides (SLOs), with the stoichiometry NaT<sub>M</sub>O<sub>2</sub> (T<sub>M</sub> = one or more transition metals, e.g. Mn, Fe, Co, Ni, etc.), are a promising family of cathode materials due to their excellent electrochemical properties, structural simplicity, and tuneable stoichiometries.[3] SLOs, consisting of repeating sheets of T<sub>M</sub>O<sub>6</sub> layers with Na ions located between, are classified by a letter and number (e.g. O3-, P2-, etc.) where the letter indicates the Na is located (O: octahedral, P: prismatic) and the number indicates the number of interlayers that are surrounding.[4]
Performance of these materials is frequently governed by their structure, and in this work we will highlight the importance of taking this into consideration. For example, while Manganese-rich layered oxides are particularly attractive due to their combination of low cost and low toxicity, their performances are often hindered by the effect of Jahn-Teller distortion (resulting from the presence of Mn<sup>3+</sup>).[5] We will not only discuss this in detail, but also highlight mitigation strategies, such as doping with electrochemically active (e.g. Fe) and inactive (e.g. Mg, Ti) elements, or synergetic P2/O3 combination effects.[5-8]
We will also examine the importance of Na-ion conductivity, determined through the use of combined electrochemical techniques and solid-state NMR spectroscopy, and show how the mobility of Na ions is related to the different local environments of Na ions (i.e. O- or P- phase) and diffusion pathways.[9] This way, we will not only show a thorough knowledge where SLO structure is key to understanding their behaviour, but also how to link this to the key descriptors for the cathode material's electrochemical performance.
References:
[1] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Energy Environ. Sci. 5 (2012) 5884-5901.
[2] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M.H. Han, T. Rojo, Energy Environ. Sci. 6 (2013) 2312-2337.
[3] M.H. Han, E. Gonzalo, G. Singh, T. Rojo, Energy Environ. Sci. 8 (2015) 81-102.
[4] C. Delmas, C. Fouassier, P. Hagenmuller, Phys. B+C. 99 (1980) 81-85.
[5] N. Ortiz-Vitoriano, N.E. Drewett, E. Gonzalo, T. Rojo, Energy Environ. Sci. 10 (2017) 1051-1074.
[6] J. Billaud, G. Singh, A.R. Armstrong, E. Gonzalo, V. Roddatis, M. Armand, T. Rojo, P.G. Bruce, Energy Environ. Sci. 7 (2014) 1387-1391.
[7] E. Gonzalo, N. Ortiz-Vitoriano, N.E. Drewett, B. Acebedo, J.M. Lopez del Amo, F.J. Bonilla, T. Rojo, J. Power Sources. 401 (2018) 117-125.
[8] M. Bianchini, E. Gonzalo, N.E. Drewett, N. Ortiz-Vitoriano, J.M. Lopez Del Amo, F.J. Bonilla, B. Acebedo, T. Rojo, J. Mater. Chem. A. 6 (2018).
[9] E. Gonzalo, M.H. Han, J.M. Lopez del Amo, B. Acebedo, M. Casas-Cabanas, T. Rojo, J. Mater. Chem. A. 2 (2014) 18523-18530.