Abstract:
Achieving a climate-neutral and circular economy by 2050 is a significant goal for Europe, emphasising innovation in clean energy and e-mobility. A major role in this transformation have permanent magnets (PM), vital in electric vehicles and renewable energy technologies. Despite their specialised market, they have a strategic impact on the EU's mobility sector and its dependence on imports. Given their critical role in numerous industrial and consumer applications, there is a pressing need for innovative approaches in their production and recycling. For over 30 years, our research group at the Jožef Stefan Institute has led research and innovations in PMs, focusing on enhancing magnetic properties and efficient use of critical material resources. The most recent activities towards these goals are commonly referred to as grain-boundary engineering, focused on manipulating the non-magnetic two-dimensional-like grain boundary regions between the magnetic matrix grains to enhance the overall coercivity of the entire magnet. Simultaneously, we have explored various recycling and reprocessing strategies to enable the sustainable reuse of magnet waste into new functional magnets with only a little or negligible loss of overall magnetic performance. In this presentation, we will discuss several case studies illustrating how atomic-level structural and chemical analysis enhances our understanding of key physical and chemical mechanisms, which are essential for optimising magnetic performance and developing effective recycling strategies. For that purpose, we employed Advanced Transmission Electron Microscopy along with specialised analytical techniques such as Electron Energy-Loss Spectroscopy and Electron Holography, which provides quantitative magnetic characterisation at nanometer resolution. Among other findings, we will highlight how various grain-boundary structural refinement strategies during spark plasma sintering (SPS) influence the coercivity of Nd–Fe–B bulk magnets [1,2]. Additionally, we will discuss innovative electrochemical recycling techniques for sintered Nd–Fe–B PMs [3,4]. These techniques, which include direct recovery of the matrix phase and pure metal winning, are still emerging but have already shown promising results in our studies.
|