Flogen
In Honor of Nobel Laureate Dr. Avram Hershko
SIPS 2024 logo

Banner

Abstract Submission Open! About 400 abstracts submitted from over 50 countries


Featuring many Nobel Laureates and other Distinguished Guests

PLENARY LECTURES AND VIP GUESTS
Alexander_Ramm

Dr. Alexander Ramm

Kansas State University

Solution Of The Millennium Problem Concerning The Navier-stokes Equations
4th Intl Symp on Geomechanics & Applications for Sustainable Development

Back to Plenary Lectures »

Abstract:

The Navier-Stokes problem in 3 consists of solving the equations:

where v = v(x, t) is the velocity of the incompressible viscous fluid, p = p(x, t) is the pressure, the density ρ = 1, f = f(x, t) is the force, v0 = v0(x) is the initial velocity.

The aim of this talk is to explain and prove the author’s result concerning the Navier-Stokes problem (NSP) in 3 without boundaries.

It is proved that the NSP is contradictory in the following sense:

If one assumes that the initial data and the solution to the NSP exists for all t ≥ 0, then one proves that the solution v(x, t) to the NSP has the property v(x, 0) = 0.

This paradox (the NSP paradox) shows that:

The NSP is not a correct description of the fluid mechanics problem and the NSP does not have a solution defined on all t ≥ 0.

In the exceptional case, when the data are equal to zero, the solution v(x, t) to the NSP exists for all t ≥ 0 and is equal to zero, v(x, t) ≡ 0.

The results, mentioned above, are proved in the author’s monographs [1], [5] and paper [3].

Our results solve the millennium problem concerning the Navier-Stokes equations, see [5].

These results are based on the author’s theory of integral equations with hyper-singular kernels, see [2], [4].

In paper [6], p.472, Theorem 2, there is a statement that, for f(x, t) = 0 and u0(x) sufficiently small, the solution to the NSP exists for all t ≥ 0 if mq, where m is the dimension of the space and the solution is in Lq. In our case m = 3 and q = 2, so the condition mq does not hold. Therefore, the claim in [6], p. 472, is not applicable in our case.