2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 8. Monteiro Intl. Symp / Composite, Ceramic and Nano Materials Processing

Editors:F. Kongoli, P. Assis, H.A.C. Lopera, S. Diaz, V. Scarpini Candido
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:288 pages
ISBN:978-1-998384-18-1 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    THERMOMECHANICAL CHARACTERIZATION USING DYNAMIC MECHANICAL ANALYSIS (DMA) OF FLAX FIBER-REINFORCED POLYMER COMPOSITES PRODUCED VIA ADDITIVE MANUFACTURING.

    Daysiane Moreira1;
    1MILITARY INSTITUTE OF ENGINEERING, Rio de Janeiro, Brazil;
    Type of Paper: Regular
    Id Paper: 296
    Topic: 18

    Abstract:

    This study aims to evaluate the performance characteristics of polymer composite materials composed of light-curing acrylic resin utilized in additive manufacturing through the AM method via vat polymerization employing a DLP process, alongside flax fibers, using dynamic mechanical analysis (DMA). DMA measures the viscoelastic properties of a material in terms of stiffness and damping, including storage modulus (E'), loss modulus (E"), and the ratio between these moduli, tangent δ, as well as the glass transition temperature (Tg). The samples were printed to dimensions of 65x12x3.5 mm and in fractions of 0%, 0.5%, 1%, 1.5%, and 2% flax fiber. After printing, they underwent exposure to UV light (405 nm) for 12 hours. Subsequently, the specimens were subjected to dynamic mechanical analysis, which revealed an increase in initial E' between the 0% and 2% samples to 2041 MPa and 2083 MPa, respectively. The loss modulus (E") showed values of 214 MPa at 45° and 176 MPa at 58°, while Tg recorded values of 80°C and 88°C. In comparison to other composites, a reduction of up to 59% was observed in the storage modulus (E'), alongside a significant decrease in the loss modulus peak (E"). The composites exhibited more pronounced peaks in the tan δ graph compared to the pure resin. Notably, the composite with a 2% mass fraction demonstrated an 8°C increase in the glass transition temperature (Tg) when contrasted with the pure resin. The remaining composites maintained a glass transition temperature within the range of 72°C to 76°C.

    Keywords:

    Additive Manufacturing; Acrylated Light-Curing Resin; DMA

    Cite this article as:

    Moreira D. (2024). THERMOMECHANICAL CHARACTERIZATION USING DYNAMIC MECHANICAL ANALYSIS (DMA) OF FLAX FIBER-REINFORCED POLYMER COMPOSITES PRODUCED VIA ADDITIVE MANUFACTURING.. In F. Kongoli, P. Assis, H.A.C. Lopera, S. Diaz, V. Scarpini Candido (Eds.), Sustainable Industrial Processing Summit Volume 8 Monteiro Intl. Symp / Composite, Ceramic and Nano Materials Processing (pp. 265-266). Montreal, Canada: FLOGEN Star Outreach