Editors: | F. Kongoli, P. Assis, H.A.C. Lopera, S. Diaz, V. Scarpini Candido |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2024 |
Pages: | 288 pages |
ISBN: | 978-1-998384-18-1 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The comparative study aimed to explore the thermal neutron transmission factor utilizing the Watt spectrum for uranium-235 fission[1-3]. In the course of the analysis, a noteworthy observation emerged, revealing that borated polyethylene exhibited a notably lower efficiency compared to regular polyethylene counterparts[4-5]. This disparity implies that while boron offers advantageous moderating properties, its incorporation may introduce other characteristics that detract from its efficacy in facilitating thermal neutron transmission[6]. This outcome underscores the critical necessity of evaluating not solely the moderating capabilities of materials but also other intrinsic traits that might impact the behavior of thermal neutrons. Specifically, boron-polyethylene (referred to as E-boron) displayed a marginally elevated transmission factor at 79.48% in contrast to common polyethylene (PE) at 78.68%. This finding suggests that the presumed homogeneity of boron-polyethylene, containing an approximate 1% boron-10 concentration, failed to exert any discernible effect on neutron flux attenuation[7]. Such a phenomenon could potentially stem from the material's inherent incapacity to maintain its uniformity in the solid state. Despite the considerable neutron-absorbing capacity conferred by carbon within the polymer, the post-reaction homogeneity of the material surprisingly facilitated radiation passage. These observations necessitate a deeper exploration into the intricate interplay between material composition, structural integrity, and neutron transmission efficiency. Furthermore, they underscore the need for a comprehensive understanding of the multifaceted factors influencing the behavior of thermal neutrons within varying material matrices. This study not only sheds light on the complexities surrounding boron-enhanced polyethylene but also underscores the broader importance of considering diverse material characteristics in the design and optimization of neutron-modulating materials for nuclear applications.