2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 8. Monteiro Intl. Symp / Composite, Ceramic and Nano Materials Processing

Editors:F. Kongoli, P. Assis, H.A.C. Lopera, S. Diaz, V. Scarpini Candido
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:288 pages
ISBN:978-1-998384-18-1 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    DEVELOPMENT OF SUSTAINABLE NATURAL FIBRE GREEN COMPOSITES FOR INDUSTRIAL APPLICATIONS IN SOUTH AFRICA

    Mandla Vincent Khumalo1;
    1NELSON MANDELA UNIVERSITY, Gqeberha (Port Elizabeth), South Africa;
    Type of Paper: Regular
    Id Paper: 15
    Topic: 18

    Abstract:

    Plastics are a necessity in today’s economy, being present in all the industrial and domestic sectors. The worldwide production of plastics about 200 million tons in 2000, 400 million tons in 2022 with an annual growth rate of 11% per annum. Basically, they are produced from petrol products and the disposal of pervasive plastic waste is a growing worldwide concern, and these materials generates large amounts of greenhouse emission which contributes to global pollution. This study examined the combined effects of coupling agent developed locally and Pineapple Leaf Fiber (PALF) different % loading on the mechanical and thermal characteristics of recycling polypropylene (r-PP) which was produced using twin screw extruder melt compounding. The PP grafted with maleic anhydride (MA) (PP -g-MA) was used as a coupling agent to improve the interfacial adhesion between recycling PP with PALF. The extent of grafting level was confirmed with FTIR. The results demonstrated the dependence of thermal stability and tensile properties on the grafting level of PP-g-MA, and weight percentage of PALF. Thus, it could be deduced that combination of PALF at high weight percentage (5, 10 and 15wt%) and PP-g-MA with high grafting level can significantly improve the thermal stability of recycling PP. The morphological analysis indicated better adhesion between PALF and recycling PP, in composites containing PP-g-MA with high grafting level. Overall, Recycling PP/PALF/PP-g-MA composites with improved interfacial adhesion and thermal stability and young’s modulus were successfully prepared, in the presence of PP-g-MA with high grafting level.

    Keywords:

    PALF; r-Polypropylene; PP-g-MA

    Cite this article as:

    Khumalo M. (2024). DEVELOPMENT OF SUSTAINABLE NATURAL FIBRE GREEN COMPOSITES FOR INDUSTRIAL APPLICATIONS IN SOUTH AFRICA. In F. Kongoli, P. Assis, H.A.C. Lopera, S. Diaz, V. Scarpini Candido (Eds.), Sustainable Industrial Processing Summit Volume 8 Monteiro Intl. Symp / Composite, Ceramic and Nano Materials Processing (pp. 133-134). Montreal, Canada: FLOGEN Star Outreach