2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 4. Kanatzidis Intl. Symp / Solid State Chemistry and Materials

Editors:F. Kongoli, M.A. Alario-Franco, I. Chung, M. Delferro, O. Farha, H. Kageyama, F. Marquis, A. Navrotsky, A. Tressaud, P. Trikalitis
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:222 pages
ISBN:978-1-998384-10-5 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    GIANT BIREFRINGENCE ACHIEVED VIA HYDROGEN BOND-CLICK REACTION FOR ENHANCED COPLANARITY LONG-RANGE ANION CORRELATIONS MEDIATING DYNAMIC ANHARMONICITY AND CONTRIBUTING TO GLASSY THERMAL CONDUCTIVITY IN WELL-ORDERED K2Ag4Se3

    Li-Ming Wu1;
    1BEIJING NORMAL UNIVERSITY, Beijing, China;
    Type of Paper: Invited
    Id Paper: 448
    Topic: 52

    Abstract:

    The realization of ultralow thermal conductivity in a well-ordered structure is crucial for crystalline materials which consider heat conduction properties to be primary in design. We report herein an extremely low (0.32‒0.25 Wm-1K-1) and glassy temperature dependence (300‒600 K) of lattice thermal conductivity in a monoclinic K2Ag4Se3. By applying a unified theory of thermal transport, we reveal that K2Ag4Se3 features a complex phonon scattering mechanism. Delocalized vibrational correlations lead to synergistic inhibition of both propagating and wave-like heat conduction through polarization transmission. Density functional theory calculations reveal that long-range correlated Se vibrations, enhanced by delocalized hole carriers, promote interlayer lattice shearing. This shearing induces dynamically competitive expressions of different orders of anharmonicity, ultimately leading to full-spectrum phonon bunching as the temperature increases. These correlated interactions cause Se anions to vibrate together as a cluster in the low frequency region, resulting in short phonon lifetimes, low group velocities, and a large scattering phase space, which ultimately suppresses both intra- and inter-band phonon transfers. Moreover, these findings have been experimentally confirmed through low-temperature heat capacity measurements and in situ Raman spectroscopy. The insights gained from this work will advance the design of crystalline materials with tailored thermal properties.

    Keywords:

    thermoelectric; thermal conductivity; long-range anion correlations

    Cite this article as:

    Wu L. (2024). GIANT BIREFRINGENCE ACHIEVED VIA HYDROGEN BOND-CLICK REACTION FOR ENHANCED COPLANARITY LONG-RANGE ANION CORRELATIONS MEDIATING DYNAMIC ANHARMONICITY AND CONTRIBUTING TO GLASSY THERMAL CONDUCTIVITY IN WELL-ORDERED K2Ag4Se3. In F. Kongoli, M.A. Alario-Franco, I. Chung, M. Delferro, O. Farha, H. Kageyama, F. Marquis, A. Navrotsky, A. Tressaud, P. Trikalitis (Eds.), Sustainable Industrial Processing Summit Volume 4 Kanatzidis Intl. Symp / Solid State Chemistry and Materials (pp. 187-188). Montreal, Canada: FLOGEN Star Outreach