Editors: | F. Kongoli, M.A. Alario-Franco, I. Chung, M. Delferro, O. Farha, H. Kageyama, F. Marquis, A. Navrotsky, A. Tressaud, P. Trikalitis |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2024 |
Pages: | 222 pages |
ISBN: | 978-1-998384-10-5 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Halide perovskites have emerged as a new class of semiconductors with excellent properties such as large tunable band-gaps, large absorption coefficients, long diffusion lengths, low effective mass and long radiative lifetimes. These have resulted in record efficiencies for photovoltaics surpassing that of Si. However, a major challenge for these materials is realizing long-term stability under light, temperature and humidity. In contrast, 2D perovskites are a sub-class of 3D perovskites, have demonstrated excellent stability compared to the 3D perovskites.
In this talk I will describe our work over the past five years on 3D and 2D perovskites ranging from novel fundamental light-induced structural behaviors and its impact on charge transport, solvent chemistry and the synergy between 2D and 3D perovskites in achieving durable and high-efficiency photovoltaic devices. Finally, if time permits, I will also present some new results, which offer an exciting prospects for developing single photon emitters using a new solid state platform, which allows for ultra stable quantum emitters with high purity photons with unity quantum yield.