2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 4. Kanatzidis Intl. Symp / Solid State Chemistry and Materials

Editors:F. Kongoli, M.A. Alario-Franco, I. Chung, M. Delferro, O. Farha, H. Kageyama, F. Marquis, A. Navrotsky, A. Tressaud, P. Trikalitis
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:222 pages
ISBN:978-1-998384-10-5 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    ELECTRON PARAMAGNETIC RESONANCE (EPR) FOR ELUCIDATION OF THE MECHANISM OF WATER OXIDATION CATALYSTS

    Bryan Hunter1;
    1NORTHWESTERN UNIVERSITY, Wilmette, United States;
    Type of Paper: Invited
    Id Paper: 312
    Topic: 52

    Abstract:

    The development of highly active earth-abundant catalysts for solar water splitting is critical for the innovation of noncarbon-based renewable fuels [1]. It is therefore important to determine the mechanisms of these water oxidation catalysts, such as nickel-iron layered double hydroxides ([NiFe]-LDHs), which exhibit low overpotentials, excellent long-term stability, and high current densities and Faradaic efficiencies [2]. In principle, mechanistic insight can pave the way for the development of new materials with enhanced activity.

    We have developed a new, magnetic resonance-based technique to monitor the reaction kinetics of [NiFe]-LDH relative to other well-studied catalysts. This technique allows for nanomolar detection of oxygen isotopes and yields important information about the mechanism of these catalysts. Membrane inlet mass spectrometry and differential electrochemical mass spectrometry were instrumental in determining electrochemical properties in situ; however, they are indeed limited in their collection efficiency and quantification of oxygen on the minute timescale [4,5]. Results were paired with computational and kinetic modeling in order to differentiate key O–O bond-forming steps. Nickel-iron-based catalysts were shown to operate by a novel oxo-oxo coupling mechanism, distinct from hydroxide attack proposed for other systems—consistent with previous findings [3]. We present our initial findings and share our efforts at incorporating pulsed EPR experiments for these systems.

    Keywords:

    [NiFe]-LDH; electron paramagnetic resonance spectroscopy; solar water splitting; renewable fuels; dioxo coupling; water oxidation mechanism; Electrocatalysis

    Cite this article as:

    Hunter B. (2024). ELECTRON PARAMAGNETIC RESONANCE (EPR) FOR ELUCIDATION OF THE MECHANISM OF WATER OXIDATION CATALYSTS. In F. Kongoli, M.A. Alario-Franco, I. Chung, M. Delferro, O. Farha, H. Kageyama, F. Marquis, A. Navrotsky, A. Tressaud, P. Trikalitis (Eds.), Sustainable Industrial Processing Summit Volume 4 Kanatzidis Intl. Symp / Solid State Chemistry and Materials (pp. 157-158). Montreal, Canada: FLOGEN Star Outreach