Editors: | F. Kongoli, M.A. Alario-Franco, I. Chung, M. Delferro, O. Farha, H. Kageyama, F. Marquis, A. Navrotsky, A. Tressaud, P. Trikalitis |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2024 |
Pages: | 222 pages |
ISBN: | 978-1-998384-10-5 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Development of thermoelectric (TE) materials & devices is important, for energy saving via waste heat power generation and IoT power sources [1]. There are a variety of device forms which can be envisioned to be useful. I will present several high-performance materials systems we have been developing such as Mg3Sb2-type materials, skutterudites, Heusler alloys, magnetic chalcogenides, etc., and mainly on the development of various TE modules. An initial realistic 8 pair bulk module of our doped Mg-Sb materials exhibited an efficiency of 7.3%@320oC, with estimated efficiency from the actual materials being ~11%, and a variant exhibited high performance room temperature power generation and cooling [2]. Recently, a modified single element device of Mg3Sb2 was able to achieve a TE efficiency ~12% [3]. Design and construction of two different design thin film TEG devices [4] and hybrid flexible TEGs will also be presented. It is also critical to have accurate evaluation of TEGs and we have recently laid out some best practices thereof [5].