2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 2. Anastassakis Intl. Symp / Mineral Processing

Editors:F. Kongoli, L. Andric, K. Aravossis, V. Chanturiya, I. Chatjigeorgiou, D. Fuerstenau, C. Kavalopoulos, C. O'Connor, V. Panayotov, J. Rubinstein
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:384 pages
ISBN:978-1-998384-06-8 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    VANADIUM-BEARING SHALE RESOURCES UTILIZATION IN WHOLE INDUSTRIAL CHAIN PERSPECTIVE

    Yimin Zhang1; Nannan Xue1; Jing Huang1; Qiushi Zheng1; Hong Liu1;
    1WUHAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, Wuhan, China;
    Type of Paper: Keynote
    Id Paper: 304
    Topic: 5

    Abstract:

    Vanadium-bearing black shale, commonly known as stone coal, has been identified to have enrichments of vanadium. It is a strategic advantage vanadium resources in China, accounting for 87% of the global shale-hosted vanadium reserves [1]. It typically forms through shallow marine sediments at high temperature and pressure in certain reducing environment [1, 2]. There are vanadium enrichments in the black shale elsewhere in the world include United States, Australia, Argentina and Kazakhstan [4]. Compared to vanadium titanium magnetite resources, vanadium-bearing shale has emerged as a significant source of strategic vanadium products due to its low contents of iron, copper, chromium and manganese.

    The world has entered a new era where the fourth industrial revolution and sixth scientific and technological revolution overlap for major countries and economies to strategically allocate mineral resources for emerging industries. Vanadium, a kind of rare metal, remains an important strategic reserve resource for developed nations. China currently holds the title of the world's largest vanadium producer and supplier with 255,500 tons produced in 2021 as reported by the Vanitec. Currently, V2O5 and other basic vanadium industrial products account for approximately 70% of the market share in China while high-end vanadium products make up over 20% [3]. With the implementation of the national strategic industrial layout, the acceleration of investment in key emerging sectors such as marine engineering, aerospace, new energy, and new materials will significantly propel the sustained growth in demand for high-end vanadium products. Efficient and environmentally-friendly extraction methods along with advanced manufacturing techniques have become crucial focal points for ensuring the healthy and sustainable development of vanadium resources in China, thereby enhancing international competitiveness.

    Over the past two decades, the vanadium-bearing shale industry has undergone rapid development, transitioning from conventional and inefficient production to the integration of the entire industrial chain encompassing beneficiation, extraction, and material manufacturing. Vanadium products derived from black shale account for approximately 40% of China's total high-end vanadium product output. Significant advancements have been achieved in the efficient extraction of vanadium from shale sources, as well as in the effective separation of individual metals and the manufacturing of high-end adaptive components.

    Keywords:

    Vanadium shale; Efficient extraction; High-end vanadium material; Utilization of the full industry chain

    Cite this article as:

    Zhang Y, Xue N, Huang J, Zheng Q, Liu H. (2024). VANADIUM-BEARING SHALE RESOURCES UTILIZATION IN WHOLE INDUSTRIAL CHAIN PERSPECTIVE. In F. Kongoli, L. Andric, K. Aravossis, V. Chanturiya, I. Chatjigeorgiou, D. Fuerstenau, C. Kavalopoulos, C. O'Connor, V. Panayotov, J. Rubinstein (Eds.), Sustainable Industrial Processing Summit Volume 2 Anastassakis Intl. Symp / Mineral Processing (pp. 372-373). Montreal, Canada: FLOGEN Star Outreach