Editors: | F. Kongoli, C.A. Amatore, R. Fehrmann, G. Kipouros, I. Paspaliaris, G. Saevarsdottir, R. Singh, R. Gupta, M. Halama, D. Macdonald, F. Wang, M. Barinova, F. Ahmed, C. Gaidau, X. Guo, K. Kolomaznik, H. Ozgunay, K. Tang, N.N. Thanh, S. Yefremova, K. Aifantis, Z. Bakenov, C. Capiglia, V. Kumar, A. U. H. Qurashi, A. Tressaud, R. Yazami |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2024 |
Pages: | 243 pages |
ISBN: | 978-1-998384-34-1 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Scanning tunneling microscope (STM) [1] is an experimental device mostly known for direct obtaining of three-dimensional images of conductive solid surfaces with an atomic resolution. In 2003, Xu and Tao [2] introduced a new experimental technique based on the STM device for inspecting electric properties of single molecules. By repeated formation and breaking of a large number of junctions formed by STM metal (gold) tip and substrate electrodes with a molecule trapped in between, they were able to determine an electric conductance of a given molecule. Named an STM-based break junction (STM-BJ) technique, it has become the most common method used to study electronic properties of single‑molecule junctions. [3] In this work we demonstrate the ability of our highly‑sensitive STM-BJ setup to distinguish between two different states of conjugation (namely the aromatic conjugation and cross‑conjugation) on a pair of 4‑pyridyl‑ethynyl‑terminated representative model molecules. The variation of conjugation in probed systems is provided via core structure formed by one of two stable oxy‑derivatives of anthracene. Presented experimental method has been applied to examine the conjugate states of monomeric metalloporphyrin units in monolayers.