Editors: | F. Kongoli, C.A. Amatore, R. Fehrmann, G. Kipouros, I. Paspaliaris, G. Saevarsdottir, R. Singh, R. Gupta, M. Halama, D. Macdonald, F. Wang, M. Barinova, F. Ahmed, C. Gaidau, X. Guo, K. Kolomaznik, H. Ozgunay, K. Tang, N.N. Thanh, S. Yefremova, K. Aifantis, Z. Bakenov, C. Capiglia, V. Kumar, A. U. H. Qurashi, A. Tressaud, R. Yazami |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2024 |
Pages: | 243 pages |
ISBN: | 978-1-998384-34-1 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
At the present stage, scientists are widely interested in the creation of hybrid (organic-mineral) composite materials [1, 2]. Thus, it is proposed to include silica of biological origin in addition to conventional components in the composition of stoneware and bricks [3, 4]. Since "Ecologization of industry and economy" has been named "the matter of sustainable development of Kazakhstan" by the President of the Republic of Kazakhstan K.-Zh. Tokayev [5], the purpose of the study was to create refractory materials based on an organic-mineral furnace charge that includes silicon-lignohydrocarbon waste.
To obtain new refractories, the base composition (control sample) including refractory clay (59%), chamotte (24%), liquid glass (8.5%), lignosulfonate (2%), magnesium sulfate (4.5%), and aluminum powder (2%) was adopted. New refractories were created using plant waste (PW), as well as liquid products of its processing SiO2-PW and OC-PW with the respective replacement of chamotte, liquid glass and lignosulfonate in different proportions until complete replacement (100% replacement). In this case, the amount of other components was determined empirically.
To prepare the samples the main components (magnesium sulfate, aluminum powder, refractory clay, and chamotte) were carefully mixed. Lignosulfonate and liquid glass (sample 1, control sample) or their substitutes (SiO2-PW and OC-PW, sample 2, experimental sample) were added to the resulting mixture. Then PW was added, replacing 10, 50, 60, 100% of chamotte (samples 3-6, experimental samples). From the resulting furnace charge, refractory samples of cylindrical shape measuring 30 × 30 mm were formed in a press mold. The samples were dried in air for 24 hours, followed by drying at a temperature of 150 °C for another 24 hours. The dried samples were then sintered at 950 °C for 1 hour. After sintering, the samples were kept in air until completely cooled; testing was carried out.
The obtained materials were examined by X-ray phase analysis (XRD). To determine optimal composition, heat resistance (number of thermal cycles) was chosen as the starting characteristic. Inspection of the ability of the samples to withstand cyclic temperature changes (heating-cooling) was carried out in a two-stage mode by heating to 960 °C for 40 minutes, followed by cooling in water at a temperature of 15 °C for 3 minutes and in air at a room temperature for 7 minutes until the sample loses 20% or more of its initial mass. Water absorption, bulk density and true density, apparent (open) porosity and true porosity of the samples were also measured.
The presence of the following crystalline phases in almost all (1-3, 6) initial (before sintering) samples was revealed by XRD: quartz, magnesium aluminosilicate, mullite, tridymite, hematite. In addition, the amount of quartz increased in the limit of 56-83 wt.%, and the amount of other phases decreased until they completely disappeared as the chamotte was replaced by the PW component. In samples 4 and 5, among the crystalline phases, only quartz (97-99%) and hematite were found. After sintering the samples at 950 оС, an increase in the quartz phase was observed in samples 1, 2, 5, 6. This fact can be viewed as an indicator of the balanced composition of furnace charge in samples 2, 5 and 6, which behaved the same as sample 1 (control sample). In the composition of all the processed samples (after partial destruction), the formation of kaolinite and calcium sulfate hydrate was determined.
Among the experimental samples of refractories obtained using organic secondary raw materials, the best heat resistance (155) is observed in sample 6. It was characterized by the following indicators: water absorption, 41.59%; bulk density, 1.06 g·cm-3; true density, 1.98 g·cm-3; apparent (open) porosity, 44.27%; true porosity, 46.11%. Obviously, high heat resistance can be explained by the presence of mullite phase and a high quartz content.
The data provided allow us to characterize the obtained sample as a lightweight refractory material that can find application in construction of vaults, refrigerators, ceiling lining of danger zones of metallurgical units, etc. Further research is needed to study its operational properties.
This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant number AP 19677767).