2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 16. Intl. Symp on Electrochemistry, Molten Salts, Corrosion, Recycling and Battery

Editors:F. Kongoli, C.A. Amatore, R. Fehrmann, G. Kipouros, I. Paspaliaris, G. Saevarsdottir, R. Singh, R. Gupta, M. Halama, D. Macdonald, F. Wang, M. Barinova, F. Ahmed, C. Gaidau, X. Guo, K. Kolomaznik, H. Ozgunay, K. Tang, N.N. Thanh, S. Yefremova, K. Aifantis, Z. Bakenov, C. Capiglia, V. Kumar, A. U. H. Qurashi, A. Tressaud, R. Yazami
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:243 pages
ISBN:978-1-998384-34-1 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    THERMAL DEGRADATION KINETICS OF CHROME-TANNED LEATHER: EFFECT OF RE-TANNING AND FAT-LIQUORING

    Jie Liu1;
    1ZHENGZHOU UNIVERSITY, Zhengzhou, China;
    Type of Paper: Regular
    Id Paper: 123
    Topic: 7

    Abstract:

    Collagen is a naturally occurring polymer with unique triple helical structure, which is the main structural component of leather [1]. The thermal stability of leather has important implications for practical applications and is affected by many factors. In the present work, the effect of re-tanning and fat-liquoring, two important post-tanning operations [2], on thermal degradation behaviors, kinetics and mechanisms of chrome-tanned leather (CTL) was investigated by using thermogravimetry (TG) and TG-Fourier transform infrared (TG-FTIR). The activation energy (Ea) values for the thermal degradation of chrome-tanned, re-tanned and fat-liquored leathers at different conversions were calculated using modified Kissinger-Akahira-Sunose (MKAS) method [3]. It was found that the average value of Ea decreased after re-tanning and fat-liquoring operations. The thermal degradation mechanism was predicted and compared based on single-step and multi-step reaction models with the combination of isoconversional and master plots methods. The results suggested that a two-parallel-reaction model could match the An model better than single-step one. TG-FTIR results showed that CO2, H2O, NH3 and pyrrole were main evolved gaseous products during CTL thermal degradation and confirmed an enhancement of gas release after re-tanning and fat-liquoring operations.

    Keywords:

    Collagen; leather; thermal degradation; kinetic model

    Cite this article as:

    Liu J. (2024). THERMAL DEGRADATION KINETICS OF CHROME-TANNED LEATHER: EFFECT OF RE-TANNING AND FAT-LIQUORING. In F. Kongoli, C.A. Amatore, R. Fehrmann, G. Kipouros, I. Paspaliaris, G. Saevarsdottir, R. Singh, R. Gupta, M. Halama, D. Macdonald, F. Wang, M. Barinova, F. Ahmed, C. Gaidau, X. Guo, K. Kolomaznik, H. Ozgunay, K. Tang, N.N. Thanh, S. Yefremova, K. Aifantis, Z. Bakenov, C. Capiglia, V. Kumar, A. U. H. Qurashi, A. Tressaud, R. Yazami (Eds.), Sustainable Industrial Processing Summit Volume 16 Intl. Symp on Electrochemistry, Molten Salts, Corrosion, Recycling and Battery (pp. 176-177). Montreal, Canada: FLOGEN Star Outreach