2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 15. Intl. Symp on Energy, Biochar, Cement, Carbon, Construction Materials, Agroforestry and Environmental

Editors:F. Kongoli, S.M. Atnaw, H. Dodds, M. Mauntz, T. Turna, H.W. Kua, M. Giorcelli, J. Antrekowitsch, G. Hanke, O. Adiguzel
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:297 pages
ISBN:978-1-998384-32-7 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    Bio-LC3 – EFFECT OF BIOCHAR, RICE HUSK ASH AND COATED SAWDUST ON LC3

    Harn Wei Kua1; Abhimanyu Goel2; Junhao Jeremy Teo2;
    1NATIONAL UNIVERSITY OF SINGAPORE, Singapore, Singapore; 2DEPARTMENT OF THE BUILT ENVIRONMENT, COLLEGE OF DESIGN & ENGINEERING, NUS, Singapore, Singapore;
    Type of Paper: Regular
    Id Paper: 457
    Topic: 77

    Abstract:

    This study introduces the concept of Bio-LC3 in which biomass waste is upcycled into sustainable ingredients in limestone calcined clay cement (LC3) by partially replacing cement. Specifically, rice husk ash, rice husk biochar, sawdust biochar and titanium dioxide (TiO2)-coated sawdust were chosen as the partial replacement for Ordinary Portland Cement (OPC). 

    The novelty of this study lies in, firstly, a high replacement rate of 5-15 wt% was applied to replace OPC with the abovementioned biomass waste. Secondly, Accelerated Carbon Curing was applied to these different types of LC3 so that we could evaluate the effects of the different waste on carbon mineralization, strength, water absorption and thermal stability of LC3

    It was found that it is possible to replace 15 wt% of cement with rice husk ash or 5 wt% of cement with TiO2-coated sawdust and achieve similar compressive strength to that of carbonated LC3 control, which was in turn significantly stronger than LC3 control without carbonation. Carbonating LC3 with TiO2-coated sawdust enhanced the reaction between mineralized carbonates (calcite) and metakaolin. In contrast, carbonation of sawdust biochar reduced calcite-metakaolin and metakaolin-Portlandite (CH) reactions, thus lowering its 28-day strength. Presence of rice husk biochar enhanced capture of carbon, as well as the overall bulk thermal stability.

    All in all, these results showed that it is possible to further increase the sustainability of LC3 by valorizing different types of bio-waste and develop special functions that enhance the overall usefulness of these sustainable materials.

    Keywords:

    Rice husk ash; Biochar; Limestone; Clay; Concrete Carbonation

    Cite this article as:

    Kua H, Goel A, Teo J. (2024). Bio-LC3 – EFFECT OF BIOCHAR, RICE HUSK ASH AND COATED SAWDUST ON LC3. In F. Kongoli, S.M. Atnaw, H. Dodds, M. Mauntz, T. Turna, H.W. Kua, M. Giorcelli, J. Antrekowitsch, G. Hanke, O. Adiguzel (Eds.), Sustainable Industrial Processing Summit Volume 15 Intl. Symp on Energy, Biochar, Cement, Carbon, Construction Materials, Agroforestry and Environmental (pp. 258-259). Montreal, Canada: FLOGEN Star Outreach