2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 14. Intl. Symp on Advanced Materials, Manufacturing, Magnesium and Aluminum

Editors:F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna, E. Suhir, Y. Yang
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:258 pages
ISBN:978-1-998384-30-3 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    COMPOSITE g-C3N4/tMeS FOR PHOTOCATALYTIC HYDROGEN EVOLUTION

    Abylay Abilkhan1; Batukhan Tatykayev1;
    1NAZARBAYEV UNIVERSITY, Astana, Kazakhstan;
    Type of Paper: Regular
    Id Paper: 452
    Topic: 43

    Abstract:

    The objective of this practical study was to ascertain whether metal sulfides (Me= Ni, Cd, Bi, Mo) can demonstrate synergistic effects when combined with carbon nitride, particularly in the g-C3N4/Bi2S3 composite, for the photocatalytic production of hydrogen from water using sunlight [1]. This represents a significant advantage, as it circumvents the necessity for the use of costly co-catalysts such as platinum. In this study, the composite was created using a combination of thermal and mechanochemical synthesis. Samples with varying component ratios in terms of bismuth sulfide (33.3%, 5.25%, 2.56%, 1.27%, 0.5%) were prepared with the objective of identifying the most efficient photocatalyst for hydrogen production. The findings indicated that the most efficacious photocatalyst for hydrogen production was theg-C3N4/Bi2S3 ratio of  2.56%. The findings indicated that the combination of bismuth sulfide and carbon nitride in the presence of visible sunlight exhibited a synergistic effect, thereby enhancing photocatalytic efficiency. This has the effect of reducing the cost of utilizing the material in question as a photocatalyst and in synthesis. SEM images depicts of the bismuth sulfide as a tubular structure, while the carbonitride is represented as a layered composition. This work contributes to advancing the fields of photocatalysis, organic dye degradation, hydrogen generation, and materials science.

    Keywords:

    hydrogen evolution; photocatalysis; bismuth silfide; carbonitride

    Cite this article as:

    Abilkhan A and Tatykayev B. (2024). COMPOSITE g-C3N4/tMeS FOR PHOTOCATALYTIC HYDROGEN EVOLUTION. In F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna, E. Suhir, Y. Yang (Eds.), Sustainable Industrial Processing Summit Volume 14 Intl. Symp on Advanced Materials, Manufacturing, Magnesium and Aluminum (pp. 222-223). Montreal, Canada: FLOGEN Star Outreach