2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 14. Intl. Symp on Advanced Materials, Manufacturing, Magnesium and Aluminum

Editors:F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna, E. Suhir, Y. Yang
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:258 pages
ISBN:978-1-998384-30-3 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    MOF-177 FUNCTIONALIZATION WITH TWO AMINO ACID-BASED IONIC LIQUIDS FOR EFFICIENT CARBON CAPTURE

    Amr Henni1;
    1UNIVERSITY OF REGINA, Regina, Canada;
    Type of Paper: Regular
    Id Paper: 427
    Topic: 43

    Abstract:

    This work presents the encapsulation of two amino acid-based ionic liquids (AAILs), 1-Ethyl-3-methylimidazolium glycine [Emim][Gly], and 1-Ethyl-3-methylimidazolium alanine [Emim][Ala], into an highly porous metal organic framework, MOF-177, to create a state-of-the-art composite for post-combustion CO2 capture. The AAILs@MOF-177 composite sorbents were synthesized at varying loadings of AAILs. These composite sorbents were then evaluated and examined for their thermal and structural integrity, CO2 capture capability, CO2/N2 selectivity, and heat of adsorption. Thermogravimetric analysis of the composites demonstrated that the encapsulation was successful, and the slow degradation of the composites suggested that AAILs and MOF-177 interacted with each other to some extent. Both the surface area and the pore volume of the composites experienced a dramatic decrease as a direct result of the encapsulation of the AAILs. The findings of the XRD analysis also showed that an increase in the loading of AAILs greater than a particular limit produced a degradation in the structural integrity of the parent support. At pressures below 1 bar (post-combustion conditions), the AAILs encapsulated composites outperformed the pure MOF177 in terms of CO2 uptake and selectivity. The maximum CO2 uptake was found to be at 20 wt.% loading for both [Emim][Gly]@MOF-177 and [Emim][Ala]@MOF-177 at 0.2 bar, 303 K, and the uptake values were about three times higher than MOF-177. In addition, the CO2/N2 selectivity of 20-[Emim][Gly]@MOF-177 and 20-[Emim][Ala]@MOF-177 increased from 5 (pristine MOF-177) to 13 and 11, respectively. However, it was discovered that the ideal amount of AAILs was 20 wt.%, and after that, increasing the loading any further, even to 30%, did not increase the CO2 uptake. The results of this study shed light on the stability of AAILs@MOF-177 composites, as well as their overall performance in capturing CO2 and CO2/N2 selectivity under post-combustion CO2 capture conditions.

    Keywords:

    Metal Organic Frameworks; Ionic Liquids; Carbon Technology

    Cite this article as:

    Henni A. (2024). MOF-177 FUNCTIONALIZATION WITH TWO AMINO ACID-BASED IONIC LIQUIDS FOR EFFICIENT CARBON CAPTURE. In F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna, E. Suhir, Y. Yang (Eds.), Sustainable Industrial Processing Summit Volume 14 Intl. Symp on Advanced Materials, Manufacturing, Magnesium and Aluminum (pp. 174-175). Montreal, Canada: FLOGEN Star Outreach