2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 14. Intl. Symp on Advanced Materials, Manufacturing, Magnesium and Aluminum

Editors:F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna, E. Suhir, Y. Yang
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:258 pages
ISBN:978-1-998384-30-3 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    MECHANICAL RESPONSE OF GRAPHENE REINFORCED ALUMINUM FOAMS AT HIGH STRAIN RATES AND HIGH TEMPERATURE

    Sanjeev Khanna1; Akhouri Sinha1; Dehi Mondal2; Rupesh Devapati1;
    1UNIVERSITY OF MISSOURI, Columbia, United States; 2ADVANCED MATERIALS & PROCESSES RESEARCH INSTITUTE, Bhopal, India;
    Type of Paper: Regular
    Id Paper: 159
    Topic: 43

    Abstract:

    Closed-cell Aluminum foam is a particular type of lightweight metallic material that can sustain considerable deformation under nearly constant stress which is known as plateau stress. Thus, under dynamic loading, aluminum foams can be used for energy absorption. However, these foams have a low plateau stress and are generally unsuitable for carrying structural loads. To improve foam mechanical properties graphene reinforcement has been used to enhance its dynamic mechanical response for applications at room temperature and high temperatures. Preliminary investigation was conducted at room temperature on graphene reinforced aluminum foam by Sinha et al. [1].

    For this investigation, aluminum foams reinforced with graphene concentration varying between 0.2 – 0.62 wt.%, manufactured using the liquid metallurgy route were studied. The compressive dynamic behavior of this foam has been studied over a range of high strain rates up to 2200 s-1 using the Split Hopkinson Pressure Bar (SHPB) apparatus [2]. The mechanical response was studied at high temperatures of 473K, 623K, and compared to room temperature of 298K. Amongst the four different graphene compositions (0.20wt.%, 0.40wt.%, 0.50wt.% and 0.62 wt.%) studied, 0.62 wt.% displayed the maximum value of peak stress, plateau stress, and energy absorption. The experimental data obtained in the present study is supported using an empirical model. 

    It is observed that at high temperature, the values of peak and plateau stress decreased when compared with the values obtained at room temperature for reinforced foam. However, the high strain rate response of the reinforced foam at high temperature was equal or better than the response of unreinforced foam under similar loading conditions at room temperature.

    Keywords:

    Graphene reinforced Al-foam; Split Pressure Hopkinson Bar; Energy absorption; High strain rate compressive loading

    Cite this article as:

    Khanna S, Sinha A, Mondal D, Devapati R. (2024). MECHANICAL RESPONSE OF GRAPHENE REINFORCED ALUMINUM FOAMS AT HIGH STRAIN RATES AND HIGH TEMPERATURE. In F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna, E. Suhir, Y. Yang (Eds.), Sustainable Industrial Processing Summit Volume 14 Intl. Symp on Advanced Materials, Manufacturing, Magnesium and Aluminum (pp. 139-140). Montreal, Canada: FLOGEN Star Outreach