2024 - Sustainable Industrial Processing Summit
SIPS 2024 Volume 11. Rowlands Intl. Symp / Mathematics

Editors:F. Kongoli, A. Bountis, M. Johnson, S. Karam, L. Kauffman, P. Mandell, M. Mikalajunas, W. Miller, G. Ord, R.M. Santilli, E. Suhir, E. Trell, T. Vougiouklis
Publisher:Flogen Star OUTREACH
Publication Year:2024
Pages:372 pages
ISBN:978-1-998384-24-2 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2024_Volume1
CD shopping page

    THE DIRAC EQUATION AND A FERMIONIC ALGEBRA

    Louis Kauffman1;
    1UNIVERSITY OF ILLINOIS AT CHICAGO, Chicago, United States;
    Type of Paper: Regular
    Id Paper: 543
    Topic: 38

    Abstract:

    This paper examines the structure of the Dirac equation and gives a new treatment of the Dirac equation in 1+1 spacetime.

    We reformulate the Dirac operator (using the method of Peter Rowlands) so that there is a nilpotent element in the Clifford algebra such that for a plane wave, the Dirac operator applied to the plane wave returns the wave multiplied by the nilpotent element.

    This means that the product of the nilpotent element and the plane wave is a solution to the Dirac equation. We use this formulation to produce solutions of the Dirac equation for (1+1) spacetime in light cone coordinates. We compare and raise questions about this solution in relation to the solutions already understood via the Feynman checkerboard model. We show that the transition to light cone coordinates corresponds to a rewriting of the Clifford algebra for the Dirac equation to a Fermionic algebra linked with a Clifford algebra.

    Keywords:

    Clifford algebra; Dirac Equation; Feynman checkerboard

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Kauffman L. (2024). THE DIRAC EQUATION AND A FERMIONIC ALGEBRA. In F. Kongoli, A. Bountis, M. Johnson, S. Karam, L. Kauffman, P. Mandell, M. Mikalajunas, W. Miller, G. Ord, R.M. Santilli, E. Suhir, E. Trell, T. Vougiouklis (Eds.), Sustainable Industrial Processing Summit Volume 11 Rowlands Intl. Symp / Mathematics (pp. 321-338). Montreal, Canada: FLOGEN Star Outreach