Editors: | F. Kongoli, H. Inufusa, T. Yoshikawa, C-A. Amatore, H-Y. Chen, W-H. Huang |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2024 |
Pages: | ## pages |
ISBN: | 978-1-998384-04-4 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
At present, the human population is consuming approximately “1.7 earth gross domestic products (earth GDPs)“ per year. It is obvious that this cannot sustain human and planetary life and health. The two major challenges to be met for preserving a healthy human life on a healthy planet are sustainable generation und use of energy and food [1].
Humanity in the Anthropocene faces enormous challenges in terms of: the global population of 8 billion today and 10 billion predicted for 2080; the human impact on biodiversity and climate change; and the need for a more resilient health care system. Yet, humanity also disposes of unprecedented knowledge, technologies, and tools to meet these challenges: the converging and mutually beneficial revolutions in bio- and information technology; and – despite remaining shortcomings – the increasing international cooperation in science, economics, and politics [2].
Nutrition and agriculture stand at the center of both the necessities and opportunities to deliver better human, animal, and planetary health by facilitating sustainable global food and feed supply for populations and livestock [3]; personalized and precision nutrition for enhanced individual human health [4]; and unlocking the wealth of natural bioactives [5]. Human nutrition needs to sustain life, enhance health, and help prevent disease. Nutrition should furthermore prolong human health span in view of extended life span, improve individual well-being, and help enhance performance. While doing that, it should sustainably use planetary resources and minimize irreparable impact on environment and climate [2].
To meet these seemingly overwhelming and possibly conflicting challenges, nutrition science is advancing towards a translational systems science supporting: a more sustainable food system "from farm to fork" [3]; a more efficient yet affordable health care system; and nutritional and dietary strategies tailored to different ethnicities as well as consumer and patient groups [6]. A more sustainable food system requires first and foremost reduction of food waste. We also need enhanced leverage of the plant kingdom for macronutrients, in particular the typically animal-derived protein, and for micronutrients and other bioactive compounds [5]. Efficient yet affordable health care should include (general, medical, and clinical) nutrition and prevention as a complement to pharmaceutical repair and cure. Tailored nutrition requires translational and comparable clinical studies with deeply phenotyped subjects, representative of population groups [7].