GROWTH FEED ADDITIVES BASED ON POLYVALENT NANODISPERSE IRON OXIDES, OBTAINED BY THE ELECTROEROSION DISPERSION METHOD, FOR FEEDING BROILER CHICKENSTetiana Prikhna1; Mykola Monastyrov2; Olena Prysiazhna3; Fernand D. S. Marquis4; Vasyl Kovalenko5; Mykola Novohatskyi6; Branko Matovic7; Ivana Cvijović-Alagić7; Jerzy Madej8; Viktor Moshchil1
1V. Bakul Institute NASU, Kyiv, Ukraine; 2Open International University of Human Development Ukraine, Kiev, Ukraine; 3Institute for Superhard Materials of the National Academy of Sciences of Ukraine, Kiev, Ukraine; 4United Nano Technologies (UNT) & Integrated Materials Technologies and Systems (IMTS), Seaside, United States; 5National University of Life and Environmental Science of Ukraine, Kyiv, Ukraine; 6Leonid Pogorilyy Ukrainian Scientific Research Institute of Forecasting and Testing of Machinery and Technologies for Agricultural Production of the Ministry of Economy of Ukraine, Kyiv, Ukraine; 7Belgrade University, Belgrade, Serbia and Montenegro; 8LLC “New Heating Technology”, Bytom, Serbia and MontenegroPAPER: 398/AdvancedMaterials/Regular (Oral) OS
SCHEDULED: 13:20/Tue. 22 Oct. 2024/Ariadni B
ABSTRACT:Nanodispersed iron oxides (contained mainly magnetit) obtained by the electroerosion dispersion (EED) technology was used to produce developed by M. Monastyrov feed additive Nano-Fe+TM. The efficiency of feed premixe Nano-Fe+TM was studied for growing broiler chickens. The method of increasing the productivity of agricultural animals and birds is to introduce iron nanopowder into the feeding ration by spraying feed with a suspension of iron nanopowder with a particle size of 20-30 nm in doses of 0.08-0.1 mg/kg of live weight per day. At the poultry faсtory, Nano-Fe+TM (suspension of iron oxides in glycerin) was diluted in water at a rate of 10 ml/10 l. The solution was sprayed on the feed of the birds before feeding at a rate of 10 l/1 ton of feed. The following results were obtained when using Nano-Fe+TM: the live weight gain of chickens increased by 5÷17%; the growth rate of broilers increased by 10÷20%; the protection of poultry from diseases increased by 10÷20%; the effects of stress from vaccination, regrouping, etc. decreased.
REFERENCES:[1] M.K. Monastyrov, T.A. Prikhna, A.G. Mamalis, W. Gawalek, P.M. Talanchuk, R.V. Shekera Nanotechnology Perceptions, 4 (2008) 179–187.
[2] B. Halbedel, T. Prikhna, P. Quiroz, T. Kups, M. Monastyrov, Current Applied Physics, 18(11) (2018) 1410–1414.
[3] M. Monastyrov, T. Prikhna, B. Halbedel, A.G. Mamalis, O. Prysiazhna, Nanotechnology Perceptions. 15(1) (2019) 48–57. N24MO18A
[4] T. Prikhna, M. Monastyrov, V. Shatilo, F. Marquis, V. Kovalenko, M. Novohatskyi, I. Cvijovic-Alagic, I. Antonyuk-Shcheglova, B. Matovic, J. Madej, S. Naskalova, O. Bondarenko, O. Prysiazhna, SIPS2023, Intl. Symp on Advanced Materials, Polymers, Composite, Nanomaterials, Nanotechnologies and Manufcturing ( pp. 61-62), 2023. - Montreal, Canada: FLOGEN Star Outreach.