The steelmaking industry is of fundamental importance in the energy context of Brazil, being characterized as one of the major consumers of electricity in the country. To be competitive in the global market, the steelmaking industry needs to show an excellent strategic plan. This plan includes efficient energy planning, seeking to make better use of resources, low environmental impacts and operating costs [1]. The thermoelectric power plants of coke integrated steelmaking industry demonstrate great economic potential, since they make use of the waste gases from the process [2]. The aim of this work is to analyze, from the environomic viewpoint, the thermoelectric power plant, observing the influence of hydrogen addition. The generation of hydrogen is by water electrolysis, driven by photovoltaic power. The methodology comprises of using a computational model created with Scilab [3]. For model validation, the actual data from the thermal power plant is used. Thermoeconomic modeling aims to obtain a system of cost equations that mathematically represents the cost formation process in the plant [4]. The computer simulations use seven scenarios of possible fuel mixtures, using the BFG, LDG, COG, and H2. The results indicate that up to 30% of hydrogen with BFG is possible to obtain energy and exergy efficiency equivalent to scenario zero that most represents the operation of the thermoelectric plant and still reduce the fuel cost [5]. The importance of energy management in an organization is highlighted in terms of potential financial gains and cost reductions. Scenario 0 based the real operating model showed lower exergetic efficiency 23.87%.