The present study investigates the advantages and feasibility of the shaft furnace in direct reduction processes, highlighting its energy efficiency and flexibility in the choice of reducing agents. The complexity of the processes involved within the furnace is addressed, dividing it into four distinct zones. Although mathematical models have been developed to predict direct reduction, their application is limited due to the simplification required in the face of the complexity of the phenomena. The integration of the shaft furnace with partial replacement of the charge by self-reducing pellets is explored, demonstrating a potential increase in process efficiency and reduction in CO2 emissions. This study proposes a multiphase and multicomponent mathematical model to predict the internal temperature distribution of the furnace, validated by simulations on an industrial scale. The results indicate a significant increase in productivity and metalization when using self-reducing pellets, as well as, a reduction in carbon emissions when partially replacing conventional reducing gas with hydrogen. The findings highlight the importance of optimizing operational parameters to maximize the benefits of the shaft furnace in direct iron production.