Despite advancements in new technologies, carbon remains crucial in metallurgy. It works as energy source and, even more importantly, as reducing agent. As many modern pyrometallurgical processes still rely on carbon, it is difficult, respectively impossible in the short term, to remove it completely or to replace it by any other element. As a step towards CO2 neutrality, the use of pyrolyzed biomass (biocoke) can work as an environmental friendlier solution which is available within a short period of time. In the metallurgical processes hardly any adaptions are necessary, as solid carbon is replaced by another form of solid carbon. However, to ensure this the biocoke must fulfill some requirements, to replace the fossil coke without any drawbacks. This regards for example the grain size, porosity, reactivity and mechanical strength.
Former trials, presented at SIPS 2023, proved the general applicability in solid-liquid and solid-gas reactors and showed advantages, disadvantages and challenges when using biocoke. Since then, many new results were generated in order to further improve the properties of biocoke. Grainsize reduction, followed by briquetting using different binders, considerably influenced not only the mechanical properties, but also the reactivity and therefore increased the variety of metallurgical processes for which the biocoke could perhaps be used in near future.