Characterization and analysis by scanning transmission and transmission electron microscopy (S/TEM) is pervasive in modern materials research. The ongoing work in our group is inspired by innovations in high throughout assays and related automation from biotech. It combines novel design and nanofabrication of in-situ stages with smart imaging to utilize electron exposure in a commensurate manner. It is tailored to “ration” both electrons and time, spatially and temporally, utilizing AI/ML methods.
The presentation will cover emerging opportunities in advanced microscopy. In addition to typical static observations of structures and defect phenomena in functional materials (thermoelectrics, energy storage, photovoltaics etc.), it will cover innovative nanofabricated ultra-thin (UT) window fluidic cells for nanoscale discrimination of reactants and products in catalysis with spectroscopy. The presentation will also explore the feasibility of AI/ML-enabled data acquisition approach for rapid and high throughput materials discovery, as well as monitoring of in-situ phenomena in the temporal domain.
The presentation will show role of microscopy for energy, environment and sustainability research and innovations for broader societal good.