FLOGEN Logo
In Honor of Nobel Laureate Dr. Avram Hershko
SIPS 2024 logo
SIPS 2024 takes place from October 20 - 24, 2024 at the Out of the Blue Resort in Crete, Greece

Honoree Banner
PROGRAM NOW AVAILABLE - CLICK HERE

More than 540 abstracts submitted from over 50 countries


Featuring many Nobel Laureates and other Distinguished Guests


Back

SIMULATION OF A HYPOTHETICAL PWR FUEL ELEMENT WITH MOLYBDENIUM-DOPEED 316 STEEL CLADDING
Thomaz Jacintho Lopes1; Ary Machado De Azevedo2; Marcos Paulo Cavaliere de Medeiros2; Sergio Monteiro2; Fernando Manuel Araújo Moreira2
1Military Institute of Engineering, Duque de Caxias, Brazil; 2Military Institute of Engineering, Rio de Janeiro, Brazil

PAPER: 211/Composite/Regular (Oral) OS
SCHEDULED: 16:05/Mon. 21 Oct. 2024/Ariadni B

ABSTRACT:

This study explores the importance of simulations conducted with MCNP5 and the modifications implemented in 316 steel to optimize energy efficiency in nuclear power production. Molybdenum (Mo) is investigated as a promising additive due to its low absorption cross-section for thermal neutrons, which enhances neutron participation in fission and heat generation. Using the MCNP5 code, simulations were performed to analyze a hypothetical UO2 fuel element with different enrichment zones to evaluate its performance[1-3]. The results indicate that incorporating molybdenum into the fuel cladding alloy significantly impacts neutron production, suggesting that this addition might affect energy generation efficiency. In summary, this study highlights the potential of molybdenum as an additive to improve nuclear fuel performance[4-8], promoting safer, more efficient, and sustainable nuclear energy. The comparison of the results from the two simulations allowed for the assessment of the impact of molybdenum inclusion on the criticality of the simulated fuel. Conversely, if the inclusion of molybdenum does not positively influence or even reduce the fuel's criticality, this suggests that such a strategy is not viable for optimizing nuclear fuel performance. Therefore, the results of this analysis have significant implications for the development of more efficient and environmentally sustainable nuclear fuels. The effective multiplication factor (keff) obtained for the clad rod under study was keff=1.12086 ± 0.00064, while the reference value without doping was keff=1.04355 ± 0.00076, resulting in a relative percentage deviation of approximately 6.897%. Doping 316 steel with molybdenum nanoparticles presented a significant alteration in neutron production, suggesting that this addition may compromise energy generation efficiency.

REFERENCES:
[1] MURTY, K. Linga; CHARIT, Indrajit. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. Journal of nuclear materials, v. 383, n. 1-2, p. 189-195, 2008.
[2] LAMARSH, John R. et al. Introduction to nuclear engineering. Upper Saddle River, NJ: Prentice hall, 2001.
[3] DUDERSTADT, James J.; HAMILTON, Louis J. Nuclear reactor analysis. Wiley, 1976.
[4] LI, Bingbing et al. Combined role of molybdenum and nitrogen in Limiting corrosion and pitting of super austenitic stainless steel. Heliyon, 2024.
[5] ZHAO, Jiaxuan et al. Fiber Laser Fillet Welding of Nb1Zr Thin Tube and Molybdenum End Plug in Ultra-high-Temperature Heat Pipe. Journal of Materials Engineering and Performance, p. 1-14, 2024.
[6] ZHANG, Chi et al. Molybdenum-14Rhenium alloy—The most promising candidate for high-temperature semiconductor substrate materials. Journal of Alloys and Compounds, v. 991, p. 174391, 2024.
[7] ISHIKAWA, Kyohei et al. Effect of Molybdenum Content on the Hardenability and Precipitation Behaviors of Boron Steel Austenitized at High Temperatures. ISIJ International, v. 64, n. 5, p. 847-858, 2024.
[8] , Qi et al. Research status and progress of welding technologies for molybdenum and molybdenum alloys. Metals, v. 10, n. 2, p. 279, 2020.