Editors: | F. Kongoli, M. Delferro, P. S. Halasyamani, M. A. Alario-Franco, F. Marquis, A. Tressaud, H. Kageyama |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2023 |
Pages: | 144 pages |
ISBN: | 978-1-989820-86-5 (CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
The well-known optical absorption J-band arises as a result of the formation of J-aggregates of polymethine dyes in their aqueous solutions. Compared to dye monomers, this band is narrow and high intensity, and redshifted. The narrowness and high intensity of the J-band are used in many applications, in particular, in the development of modern dye lasers. The J-band was discovered experimentally by Jelley and independently by Scheibe in 1936 [1,2]. In 1938, Franck and Teller [3] gave a theoretical explanation of the J-band based on the Frenkel exciton model. In 1984, based on the same exciton model, Knapp explained the shape of the J-band [4]. Subsequently, within the framework of the Frenkel exciton model, the shape of the J-band was studied by a large number of theorists, including the author of this abstract [5]. The author's reviews [6,7] provide a detailed critique of the explanation of the nature of the J-band based on the Frenkel exciton model. In particular, a significant drawback of this model is its inability to explain in principle the nature and shape of the optical bands of polymethine dye monomers from which J-aggregates are formed [6–8]. The author gives an alternative explanation of the nature of the J-band in the framework of a new fundamental physical theory, namely, in the framework of quantum-classical mechanics of elementary electron transfers in condensed media, which includes an explanation of the nature and shape of the bands of polymethine monomers that form J-aggregates [8] . Quantum-classical mechanics is a significantly modified quantum mechanics, in which the initial and final states of the "electron + nuclear environment" system for its "quantum" transitions are quantum in the adiabatic approximation, and the transient chaotic electron-nuclear(-vibrational) state due to chaos is classical [8]. This chaos is called dozy chaos. The new explanation of the nature and shape of the J-band is based on the so-called Egorov nano-resonance discovered in quantum-classical mechanics [8]. Egorov nano-resonance is a resonance between the electron motion and the motion of the reorganization of the nuclei of the environment during quantum-classical transitions in the optical chromophore under the condition of weak dozy chaos in the electron-nuclear(-vibrational) transient state [9].