2023-Sustainable Industrial Processing Summit
SIPS2023 Volume 8. Poeppelmeier Intl. Symp. / Solid State Chemistry

Editors:F. Kongoli, M. Delferro, P. S. Halasyamani, M. A. Alario-Franco, F. Marquis, A. Tressaud, H. Kageyama
Publisher:Flogen Star OUTREACH
Publication Year:2023
Pages:144 pages
ISBN:978-1-989820-86-5 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2023_Volume1
CD shopping page

    TOPOLOGY FOR ENERGY CONVERSION AND CATALYSIS

    Claudia Felser1;
    1MAX-PLANCK-INSTITUTE CHEMICAL PHYSICS OF SOLIDS, Dresden, Germany;
    Type of Paper: Regular
    Id Paper: 191
    Topic: 52

    Abstract:

    Topology, a mathematical concept, recently became a hot and truly transdisciplinary topic in condensed matter physics, solid state chemistry and materials science. All 200 000 inorganic materials were recently classified into trivial and topological materials, such as topological insulators, Dirac, Weyl and nodal-line semimetals, and topological metals [1]. More than 25% of all materials host topological bands around the Fermi energy. Beyond the single particle picture, we have identified first antiferromagnetic topological materials [2]. Experimentally, we have realized ferromagnetic materials, examples are Co2MnGa and Co3Sn2S2. Surprisingly all crossings in the band structure of ferromagnets are Weyl nodes or nodal lines [3]. Mn3Sn and YbMnBi2 are examples of non collinear antiferromagnetic Weyl semimetals, which show giant values for the anomalous Hall and Nernst effect [4]. In the context of real space topology, skyrmions and antiskyrmions are a possible new direction for new data storage [5]. Our goal is to identify new quantum-materials for highly efficient spintronics, quantum computing and energy conversion. 

    Keywords:

    Advances In The Synthesis Routes; Design Of Materials For Sustainable Energy Production; Important Classes Of Materials; topology

    References:

    [1] 1. Bradlyn et al., Nature 547 298, (2017), Vergniory, et al., Nature 566 480 (2019), Vergniory, et al., Science 2022 arXiv:2105.09954.
    [2] 2. Xu et al. Nature 586, 702 (2020).
    [3] 3. Liu, et al. Nature Physics 14, 1125 (2018), Belopolski, et al., Science 365, 1278 (2019), Guin, et al. Advanced Materials 31 (2019) 1806622, Liu, et al., Science 365, 1282 (2019), Morali, et al., Science 365, 1286 (2019)
    [4] 4. Pan, et al., Nature Materials 21 (2022) 203, Kübler and Felser, EPL 120 (2017) 47002 and EPL108 (2014) 67001, Nayak, et al. Science Advances 2 (2016) e1501870
    [5] 5. Nayak et al., Nature 548 (2017) 561

    Cite this article as:

    Felser C. (2023). TOPOLOGY FOR ENERGY CONVERSION AND CATALYSIS. In F. Kongoli, M. Delferro, P. S. Halasyamani, M. A. Alario-Franco, F. Marquis, A. Tressaud, H. Kageyama (Eds.), Sustainable Industrial Processing Summit Volume 8 Poeppelmeier Intl. Symp. / Solid State Chemistry (pp. 141-142). Montreal, Canada: FLOGEN Star Outreach