2023-Sustainable Industrial Processing Summit
SIPS2023 Volume 13. Intl. Symp on Physics, Mathematics and Multiscale Mechanics

Editors:F. Kongoli, A. B. Bhattacharya, A.C. Pandey, G. Sandhu, F. Quattrocchi, L. Sajo-Bohus, S. Singh, H.S. Virk, R.M. Santilli, M. Mikalajunas, E. Aifantis, T. Vougiouklis, P. Mandell, E. Suhir, D. Bammann, J. Baumgardner, M. Horstemeyer, N. Morgan, R. Prabhu, A. Rajendran
Publisher:Flogen Star OUTREACH
Publication Year:2023
Pages:298 pages
ISBN:978-1-989820-96-4 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2023_Volume1
CD shopping page

    IMPROVING THE FATIGUE DESIGN OF MECHANICAL SYSTEMS: EXAMINATION OF PNEUMATIC CYLINDER IN AUTOMATIC ASSEMBLY LINE

    Seongwoo Woo1;
    1TECHNICAL AND VOCATIONAL TRAINING INSTITUTE (TVTI), Addis Ababa, Ethiopia;
    Type of Paper: Regular
    Id Paper: 149
    Topic: 70

    Abstract:

    To enhance the lifetime of mechanical system such as automobile, new reliability methodology – parametric Accelerated Life Testing (ALT) – suggests to produce the reliability quantitative (RQ) specifications—mission cycle—for identifying the design defects and modifying them. It incorporates: (1) a parametric ALT plan formed on system BX lifetime that will be X percent of the cumulated failure, (2) a load examination for ALT, (3) a customized parametric ALTs with the design alternatives, and (4) an assessment if the system design(s) fulfil the objective BX lifetime. So we suggest a BX life concept, life-stress (LS) model with a new effort idea, accelerated factor, and sample size equation. This new parametric ALT should help an engineer to discover the missing design parameters of the mechanical system influencing reliability in the design process. As the improper designs are experimentally identified, the mechanical system can recognize the reliability as computed by the growth in lifetime, LB, and the decrease in failure rate. Consequently, companies can escape recalls due to the product failures from the marketplace. As an experiment instance, two cases were investigated: 1) problematic reciprocating compressors in the French-door refrigerators returned from the marketplace and 2) the redesign of hinge kit system (HKS) in a domestic refrigerator. After a customized parametric ALT, the mechanical systems such as compressor and HKS with design alternatives were anticipated to fulfil the lifetime – B1 life 10 year.

    Keywords:

    Computational Methods; Damage; Modelling; Multiphysics; Multiscale

    References:

    [1] Woo S, O’Neal D, Pecht M. Improving the lifetime of mechanical systems during transit established on quantum/transport life-stress prototype and sample size, Mechanical Systems and Signal Processing. 2023; 193: 110222.
    [2] Woo S, Pecht M, O’Neal D. Reliability design and case study of the domestic compressor subjected to repetitive internal stresses. Reliability Engineering & System Safety. 2020; 193: 106604.

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Woo S. (2023). IMPROVING THE FATIGUE DESIGN OF MECHANICAL SYSTEMS: EXAMINATION OF PNEUMATIC CYLINDER IN AUTOMATIC ASSEMBLY LINE. In F. Kongoli, A. B. Bhattacharya, A.C. Pandey, G. Sandhu, F. Quattrocchi, L. Sajo-Bohus, S. Singh, H.S. Virk, R.M. Santilli, M. Mikalajunas, E. Aifantis, T. Vougiouklis, P. Mandell, E. Suhir, D. Bammann, J. Baumgardner, M. Horstemeyer, N. Morgan, R. Prabhu, A. Rajendran (Eds.), Sustainable Industrial Processing Summit Volume 13 Intl. Symp on Physics, Mathematics and Multiscale Mechanics (pp. 283-298). Montreal, Canada: FLOGEN Star Outreach