BIOMASS CONSUMPTION IN A STEAM GENERATOR IN THE CONTEXT OF THE BRAZILIAN SCENARIO Dimas Coura1; Paulo Assis2; 1IFMG CAMPUS OURO, BRANCO, Conselheiro Lafaiete, Brazil; 2UFOP, OURO PRETO, Ouro Preto, Brazil; PAPER: 60/Iron/Regular (Oral) OS SCHEDULED: 17:10/Tue. 28 Nov. 2023/Dreams 2 ABSTRACT: The increase in the added value of the product from the steel making process, in the production of steel and different rolled products for the various industrial sectors, together with actions to reduce CO2 emissions. The demand forecast for 2050 is considers and must be ensured by a 100% renewable system [1]. The transition to a 1.5-2°C world will fundamentally change exiting the resource flows of both metals and fóssil fuels [2]. It has been shown to be an option for the viability of environmental protection projects, such as way to improve the profitability of the activity. Within this scenario, biomass has been presented as a source of energy of great utility, when it comes to renewable sources like the sugar and alcohol mil cogeneration systems and industrial and service sector [3]. The circular economy and low carbon or by the reduction of natural gas itself with CO2 sequestration in the process. It can only ever be one of a range of sustainability orientated initiatives that manifests in the here and now [4]. Demark utilizes the greatest proportion of agricultural wastes for power generation at 16.8%, followed by Finland (15.6%), Brazil (8.4%) [5]. The conversion of biomass energy into heat, using steam-generating boilers, presents adequate yields, when used together with gases produced internally by the process, since it provides energy in a form that is easily usable by the steel making process, either in the form of steam. for use in industrial processes or for sending air to blast furnaces or for generating electricity. Biomass has 45% carbon, 42% oxygen, 5% hydrogen and 8% other minerals in its composition. The feasibility of using biomass in Brazil as fuel in steam generating boilers requires a comprehensive and conclusive study, in relation to the real influence on the agricultural process, the carbon market and other sources such as biogas. Faced with the scenario of viability of consumption of this source in steam boilers, the context of Brazil and a vision of the current scenario of consumption of biomass. It will be like a discussion to the theme. References: REFERENCES: [1] Luz, Thiago José Da, et al. “Complementarity Between Renewable Energy Sources and Regions - Brazilian Case”. Brazilian Archives of Biology and Technology, vol. 66, 2023, p. e23220442. DOI.org (Crossref), https://doi.org/10.1590/1678-4324-2023220442. [2] Watari, Takuma, et al. “Sustainable Energy Transitions Require Enhanced Resource Governance”. Journal of Cleaner Production, vol. 312, agosto de 2021, p. 127698. DOI.org (Crossref), https://doi.org/10.1016/j.jclepro.2021.127698. [3] La Picirelli De Souza, Lidiane, et al. “Life Cycle Assessment of Prospective Scenarios Maximizing Renewable Resources in the Brazilian Electricity Matrix”. Renewable Energy Focus, vol. 44, março de 2023, p. 1–18. DOI.org (Crossref), https://doi.org/10.1016/j.ref.2022.11.002. [4] Figge, Frank, et al. “Definitions of the Circular Economy: Circularity Matters”. Ecological Economics, vol. 208, junho de 2023, p. 107823. DOI.org (Crossref), https://doi.org/10.1016/j.ecolecon.2023.107823. [5] Zheng, Yingying, et al. “Carbon Footprint Analysis for Biomass-Fueled Combined Heat and Power Station: A Case Study”. Agriculture, vol. 12, no 8, agosto de 2022, p. 1146. DOI.org (Crossref), https://doi.org/10.3390/agriculture12081146. |