FUNCTIONALIZATION OF ENDOHEDRAL METALLOFULLERENES: INSIGHTS FROM COMPUTATIONAL STUDIES Antonio Rodriguez Fortea1; 1UNIVERSITAT ROVIRA I VIRGILI, Tarragona, Spain; PAPER: 47/Nanomaterials/Invited (Oral) OS SCHEDULED: 11:30/Wed. 29 Nov. 2023/Dreams 3 ABSTRACT: Since the isolation of the first endohedral metallofullerene (EMF) La@C82,1 intensive research has been devoted to this family of compounds that encapsulate metal atoms or clusters in their inner void space.2 Exohedral functionalization of EMFs is a key step to obtain new materials for multiple applications. For instance, water-soluble gadofullerenes are used as powerful contrast agents in medicine.3 Derivatization has also become an essential tool to purify and separate fullerene mixtures.4 Cycloadditions as Bingel-Hirsch reaction, Prato reaction, Diels-Alder reaction, or carbene and benzyne additions were among the most used reactions, although multicomponent reactions have been also considered recently.5 Computational chemistry has helped so far not only to understand the regioselectivity of a wide variety of chemical functionalization on EMFs, but also to disclose in many cases their reaction mechanisms.6 We here will present an overview of our computational studies on the reactivity of EMFs and will focus on recent results on actinidofullerenes, a family recently isolated and characterized by the groups of Ning Chen in Soochow and Echegoyen at UTEP.7 In mono-actinidofullerenes, the actinide tends to have oxidation state +4, which involves an important metal-cage interaction with significant covalent contributions. This feature makes them different from lanthanofullerenes, where the metal is usually with oxidation state +3. Consequently, the electronic structure, properties as well as reactivity of actinidofullerenes are expected to be different compared to their lanthanide counterparts. References: 1. Chai, Y.; Cuo, T.; Jin, C.; Haufler, R. E.; Felipe Chibante, L. P.; Fure, J.; Wang, L.; Alford, J. M.; Smalley, R. E. <i>J. Phys. Chem.</i> <b>1991</b>, <i>95</i>, 7564-7568. 2. Popov, A. A.; Yang, S.; Dunsch, L. <i>Chem. Rev.</i> <b>2013</b>, <i>113</i>, 5989-6113. 3. a) Shu, C.; Corwin, F. D.; Zhang, J.; Chen, Z.; Reid, J. E.; Sun, M.; Xu, W.; Sim, J. H.; Wang, C.; Fatouros, P. P.; Esker, A. R.; Gibson, H. W.; Dorn, H. C. <i>Bioconjugate Chem. </i><b>2009</b>, <i>20</i>, 1186-1193; b) Wang, T.; Wang, C. <i>Small</i> <b>2019</b>, <i>15</i>, 1901522. 4. a) Chen, N.; Zhang, E.-Y.; Tan, K.; Wang, C.-R.; Lu, X. <i>Org. Lett.</i> <b>2007</b>, <i>9</i>, 2011-2013; b) Koenig, R. M.; Tian, H.-R.; Seeler, T. L.; Tepper, K. R.; Franklin, H. M.; Chen, Z.-C.; Xie, S.-Y.; Stevenson, S.<i> J. Am. Chem. Soc.</i> <b>2020</b>, <i>142</i>, 15614-15623. 5. Li, Y.; Emge, T. J.; Moreno-Vicente, A.; Kopcha, W. P.; Sun, Y.; Mansoor, I. F.; Lipke, M. C.; Hall, G. S.; Poblet, J. M.; Rodriguez-Fortea, A.; Zhang, J. <i>Angew. Chem. Int. Ed.</i> <b>2021</b>, <i>60</i>, 25269-25273. 6. a) Rodríguez-Fortea, A.; Campanera, J. M.; Cardona, C. M.; Echegoyen, L.; Poblet, J. M. <i>Angew. Chem. Int. Ed.</i> <b>2006</b>, <i>45</i>, 8176-8180; b) Alegret, N.; Rodriguez-Fortea, A.; Poblet, J. M. <i>Chem. Eur. J.</i> <b>2013</b>, <i>19</i>, 5061-5069; c) Osuna, S. Swart, M.; Solà, M. <i>Phys. Chem. Chem. Phys.</i> <b>2011</b>, <i>13</i>, 3585-3603. 7. a) Wang, Y.; Morales-Martínez, R.; Zhang, X.; Yang, W.; Wang, Y.; Rodriguez-Fortea, A.; Poblet, J. M.; Feng, L.; Wang, S.; Chen, N. <i>J. Am. Chem. Soc.</i> <b>2017</b>, <i>139</i>, 5110-5116; b) Cai, W.; Abella, L.; Zhuang, J.; Zhang, X.; Feng, L.; Wang, Y.; Morales-Martínez, R.; Esper, R.; Boero, M.; Metta-Magaña, A.; Rodriguez-Fortea, A.; Poblet, J. M.; Echegoyen, L.; Chen, N. <i>J. Am. Chem. Soc.</i> <b>2018</b>, <i>140</i>, 18039-18050; c) Yao, Y.-R.; Roselló, Y.; Ma, L.; Puente Santiago, A. R.; Metta-Magaña, A.; Chen, N.; Rodriguez-Fortea, A.; Poblet, J. M.; Echegoyen, L. <i>J. Am. Chem. Soc.</i> <b>2021</b>, <i>143</i>, 15309-15318. |