Ryoji AsahiNagoya UniversityAlloy Design Based On First-principles Calculations From Deductive To Inductive Approach Mizutani International Symposium (6th Intl. Symp. on Science of Intelligent & Sustainable Advanced Materials (SISAM)) Back to Plenary Lectures » | |
Abstract:The first-principles calculations based on density functional theory (DFT) have succeeded in a broad range of systems thanks to accurate description of electronic structure and their transferability. Here we present some studies on alloys using the first-principles calculations to understand deductively mechanism of properties such as stability and superelasticity. Regarding the stability of the gamma-phase alloys, the Hume-Rother electron concentration rule was revisited in terms of the first-principles calculations. The detailed analysis elucidates an interaction between the Fermi surface and the Brillouin zone that results in pseudogap formation and stability of the system with a certain electron density [1]. The electron density also plays a significant role in Ti-Nb-Ta-Zr-O alloys called “gum metal” which shows high strength, low Young's modulus and high elastic deformability, simultaneously. These unusual properties can be understood by softening with a particular electron concentration and Zr-O nano-clusters to be obstacles for dislocation movement [2]. |