Editors: | F. Kongoli, J. Dubois, E. Gaudry, T. Homma, V. Fournee |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 116 pages |
ISBN: | 978-1-989820-50-6(CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) is the most interesting CPs; it has the highest electrical conductivity when compared to other CPs [1]. Moreover, it possesses many useful properties such as a low band gap energy, superior electrochemical and thermal stabilities, and high transparency [2]. In this work, PEDOT: PSS nanoparticles in powder form with high electrical conductivity was synthesized by chemical oxidative polymerization. In addition, the effects of acid types and EDOT: PSS weight ratio were investigated. For the effect of acid types, at the 0.5 EDOT: 5.5 PSS weight ratio in 0.1 M HClO4 was the best condition to obtain 1.04 x 104 ± 188 Scm-1 due to the multiple dopants (ClO4-, PSS-, SO42-). For the effect of EDOT: PSS weight ratio, at the 0.5 EDOT: 5.5 PSS weight ratio in 0.1 M HClO4 was the proper condition as it provided the high amount of dopant (ClO4-, PSS-, SO42- ) available to interact with PEDOT chain. These results were verified by Fourier transformed infrared spectroscopy, UV-VIS spectrometry, X-ray photoelectron spectrometry, and thermogravimetric analysis. The particle shapes of PEDOT: PSS synthesized in all conditions were spherical. The particle size of PEDOT: PSS varied from 21.15 ± 2.60 to 33.79 ± 2.27 nm.