2022-Sustainable Industrial Processing Summit
SIPS2022 Volume 8 Mauntz Intl. Symp. Energy Production

Editors:F. Kongoli, H. Dodds, S. Atnaw, T. Turna.
Publisher:Flogen Star OUTREACH
Publication Year:2022
Pages:266 pages
ISBN:978-1-989820-48-3(CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2022_Volume1
CD shopping page

    Online Condition Monitoring of Engines by a Deep Analysis of the Electrical Conductivity and Relative Permittivity Changes of the Lubricant

    Manfred Mauntz1; Jorn Peuser1;
    1CMC INSTRUMENTS GMBH, Eschborn, Germany;
    Type of Paper: Plenary
    Id Paper: 119
    Topic: 17

    Abstract:

    The requirements in the power generation with biogas, gas and diesel engines rise. Ever more flexibility at a maximum operational reliability and a long-life time are required of them at the same time, so the requirements for the oil and the oil condition monitoring grow correspondingly. This presentation provides information about an online oil condition monitoring system to give a solution to the mentioned priorities. The focus is set to the detection of contamination effects in contrast to oil changes in gearboxes where the additive degradation is the dominating effect.
    The online oil sensor system measures the components conductivity, the relative permittivity and the temperature independently from each other. Based on a very sensitive measurement method with high accuracy even small changes in the conductivity and dielectric constant of the oil composition can be detected reliably. The sensor system effectively controls the proper operation conditions of the engines and gearboxes instantaneously signals any kind of abnormal parameter change.
    The system enables damage prevention of the engine by an advanced warning time of critical operation conditions and an enhanced oil exchange interval realized by a precise measurement of the electrical conductivity, the relative permittivity and the oil temperature. The WearSens® Index (WSi) which has been successfully implemented in wind power gearbox applications is quite flexible and can be adjusted to the engine monitoring as well. The mathematical model of the WSi combines all measured values and its gradients in one single parameter for a comprehensive monitoring to prevent the asset from expensive damage. Furthermore, the WSi enables a long-term prognosis on the next oil change by 24/7 server data logging. Corrective procedures and/or maintenance can be carried out before actual damage occurs. Raw data and WSi results of a landfill gas engine installation is shown. Short-term and long-term analysis of the data show significant trends and events, which are discussed more in detail.
    24/7 monitoring of the system during operation enables specific preventive and condition-based maintenance and independent of rigid inspection intervals.

    Keywords:

    Electrochemical; Energy; Engineering; Fuels; Gas; Industry; Liquids; Lubricating; Measurement; Oil; Optimization; Sensors; Technology;

    References:

    [1] Gegner, J., Kuipers, U. and Mauntz, M.: Ölsensorsystem zur Echtzeitzustands-überwachung von technischen Anlagen und Maschinen, Technisches Messen 77, pp. 283-292, (2010)
    [2] Mauntz, M., Gegner J., Klingauf S. and Kuipers U.: Continuous Wear Measurement in Tribological Systems to Control Operational Wear Damage with a new Online Oil Sensor System, TAE Technische Akademie Esslingen, 19th International Colloquium Tribology, Esslingen, January 21-23, 2014, (2014)
    [3] Mauntz, M., Kuipers, U. and Peuser, J.: Continuous, online detection of critical operation conditions and wear damage with a new oil condition monitoring system, WearSens®, 14th International Conference on Tribology - SERIATRIB ’15 Proceedings, Belgrad, Serbian Tribology Society Kragujevac, University of Belgrade, Faculty of Mechanical Engineering, Belgrade, ISBN: 978-86-7083-857-4, S. 283-288, (2015)
    [4] Mauntz, M., Kuipers, U. and Peuser, J.: New oil condition monitoring system, WearSens® enables continuous, online detection of critical operating conditions and wear damage, Malaysian International Tribology Conference 2015 - MITC2015, Penang, Malaysia on November 16-17, 2015, Conference Proceedings, ISBN: 978-967-13625F-0-1, S. 179-180, (2015)

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Mauntz M and Peuser J. (2022). Online Condition Monitoring of Engines by a Deep Analysis of the Electrical Conductivity and Relative Permittivity Changes of the Lubricant. In F. Kongoli, H. Dodds, S. Atnaw, T. Turna. (Eds.), Sustainable Industrial Processing Summit SIPS2022 Volume 8 Mauntz Intl. Symp. Energy Production (pp. 39-48). Montreal, Canada: FLOGEN Star Outreach