Editors: | F. Kongoli,E. Aifantis, A, Konstantinidis, D, Bammann, J. Boumgardner, K, Johnson, N, Morgan, R. Prabhu, A. Rajendran |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 382 pages |
ISBN: | 978-1-989820-38-4(CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
With the development of the electric-automobiles, magnetic materials are strongly emerging as major parts to improve the efficiency of the electric motor. In this respect, we strongly believe that soft & hard magnets can be bound to be the main field of powder metallurgy (P/M) technology because P/M magnets have unique selling points with three-dimensional flux properties. In this research, we propose a new prediction system in an injection-molded magnet. By developing the magnetic particle orientation model and magneto-rheological model, complicated flow behaviors of powder-polymer binder mixtures can be predicted during field-induced injection molding. The orientation prediction system in the injection-molded magnet can be made up of three factors; i) the magneto-rheological model for the macro phenomenon, ii) the magnetic particle orientation model for the micro phenomenon, iii) Simulation of the mold flow with the external magnetic field. Our approach opens the way to calculate the degree of alignment in the hard magnet and further design the anisotropic flux direction in the complex magnetic components.