Editors: | F. Kongoli,E. Aifantis, A, Konstantinidis, D, Bammann, J. Boumgardner, K, Johnson, N, Morgan, R. Prabhu, A. Rajendran |
Publisher: | Flogen Star OUTREACH |
Publication Year: | 2022 |
Pages: | 382 pages |
ISBN: | 978-1-989820-38-4(CD) |
ISSN: | 2291-1227 (Metals and Materials Processing in a Clean Environment Series) |
Conflicts in different parts of the world and impacts among fast moving objects produce extreme loads of very high intensity but of short duration that severely damage structures. A goal of this work to design lightweight sandwich structures that successfully protect the object to which they are strongly bonded. Realizing that design by experimentally testing several prototypes is very expensive, we use the finite element method to first ensure that the mathematical model of the problem predicts results close to test findings. Subsequently, we couple it with an optimization algorithm to find the lay-up and the thickness of 8 core layers and the fiber-reinforced face sheets to simultaneously minimize the mass and maximize either the back face deflection or the force transmitted to the rigid body perfectly bonded to the rear face-sheet. It is found that in the core the mass density and the mechanical properties do not continuously vary through the thickness.