2022-Sustainable Industrial Processing Summit
SIPS2022 Volume 3 Horstemeyer Intl.Symp. Multiscale Materials Mechanics & Applications

Editors:F. Kongoli,E. Aifantis, A, Konstantinidis, D, Bammann, J. Boumgardner, K, Johnson, N, Morgan, R. Prabhu, A. Rajendran
Publisher:Flogen Star OUTREACH
Publication Year:2022
Pages:382 pages
ISBN:978-1-989820-38-4(CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2022_Volume1
CD shopping page

    Gradient enhancing classical quantum mechanical and empirical interatomic potentials

    Konstantinos Parisis1; Elias Aifantis1;
    1ARISTOTLE UNIVERSITY OF THESSALONIKI, Thessaloniki, Greece;
    Type of Paper: Keynote
    Id Paper: 300
    Topic: 1

    Abstract:

    A proposal is advanced for enhancing classical quantum mechanical and empirical potentials with a Laplacian term incorporating nonlocal effects. It is shown that this results in a “repulsive” branch, in addition to its classical “attractive” branch derived by rigorous quantum mechanical considerations. By properly choosing the gradient coefficient (or internal length) multiplying the Laplacian term, it is shown that the gradient-enhanced London potential recovers the structure of the empirical Lennard-Jones potential, and the same holds for the Stillinger-Weber potential. In the sequel, an attempt is made to address the role of such gradient enhancement for the case of Baskes embedded atom method (EAM) to determine whether or not the Laplacian term can account for non pairwise interactions and angular/orientation effects. Finally, the role of bi-Laplacian and fractional/fractal effects is briefly discussed.

    References:

    K. Parisis, F. Shuang, P. Hu, A. Konstantinidis, A. Giannakoudakis and E.C. Aifantis, From gradient elasticity to gradient interatomic potentials: The case-study of gradient London potential, J. Appl. Math. Phys. 8, 1826-1837, 2020.
    K. Parisis and E.C. Aifantis, Gradients, singularities and interatomic potentials, in: TMS 2021 150th Annual Meeting & Exhibition Supplementary Proceedings, pp. 793-800, 2021.
    E.C. Aifantis, Gradient Extension of Classical Material Models: From Nuclear & Condensed Matter Scales to Earth & Cosmological Scales, Springer Tracts in Mechanical Engineering, , pp. 417–452, 2021.

    Cite this article as:

    Parisis K and Aifantis E. (2022). Gradient enhancing classical quantum mechanical and empirical interatomic potentials. In F. Kongoli,E. Aifantis, A, Konstantinidis, D, Bammann, J. Boumgardner, K, Johnson, N, Morgan, R. Prabhu, A. Rajendran (Eds.), Sustainable Industrial Processing Summit SIPS2022 Volume 3 Horstemeyer Intl.Symp. Multiscale Materials Mechanics & Applications (pp. 159-160). Montreal, Canada: FLOGEN Star Outreach