2022-Sustainable Industrial Processing Summit
SIPS2022 Volume 3 Horstemeyer Intl.Symp. Multiscale Materials Mechanics & Applications

Editors:F. Kongoli,E. Aifantis, A, Konstantinidis, D, Bammann, J. Boumgardner, K, Johnson, N, Morgan, R. Prabhu, A. Rajendran
Publisher:Flogen Star OUTREACH
Publication Year:2022
Pages:382 pages
ISBN:978-1-989820-38-4(CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2022_Volume1
CD shopping page

    Transmissibility in a Model of Nonlinear Double Diffusion

    Amit Chattopadhyay1;
    1ASTON UNIVERSITY, Birmingham, United Kingdom;
    Type of Paper: Keynote
    Id Paper: 266
    Topic: 1

    Abstract:

    Physics and mathematics have traditionally served as the technical knowledge bank of other quantitative subjects. Rarely, though, a reverse mapping has been successfully attempted. In a recent study, we mapped an established technique from epidemiology to solve a problem in material science. This technique, popularly referred to as 'reproduction number generator', that is used to calculate the speed and number of secondary infections, can estimate transport properties of a generic interactive double diffusion process. We showed that the analytical solution agrees closely with the exact numerical solution to a high order of accuracy with the key advantage of minimalist representation in interpreting the impact of parameters in nanocomposite double diffusion. The technique is generic enough to be implementable in all forms of nonlinear multi-diffusion modelling in material science and biology.

    Cite this article as:

    Chattopadhyay A. (2022). Transmissibility in a Model of Nonlinear Double Diffusion. In F. Kongoli,E. Aifantis, A, Konstantinidis, D, Bammann, J. Boumgardner, K, Johnson, N, Morgan, R. Prabhu, A. Rajendran (Eds.), Sustainable Industrial Processing Summit SIPS2022 Volume 3 Horstemeyer Intl.Symp. Multiscale Materials Mechanics & Applications (pp. 153-154). Montreal, Canada: FLOGEN Star Outreach