2022-Sustainable Industrial Processing Summit
SIPS2022 Volume 18 Intl. Symp on Advanced Materials, Polymers, Composite, Nanomaterials, Nanotechnologies and Manufacturing

Editors:F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna, M. De Campos, S. Lewis, S. Miller, S. Thomas.
Publisher:Flogen Star OUTREACH
Publication Year:2022
Pages:290 pages
ISBN:978-1-989820-68-1(CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2022_Volume1
CD shopping page

    Microstructure Modeling of Uniform Droplet Sprayed Deposits for Mg Alloy-Based Additive Manufacturing

    Charalabos Doumanidis1;
    1VIN UNIVERSITY, Hanoi, Vietnam;
    Type of Paper: Regular
    Id Paper: 47
    Topic: 48

    Abstract:

    This article addresses modeling of the solidifying material structure during 3D welding/printing of fully dense Mg alloy products by fused deposition of molten droplets from a uniform droplet spray source on a motorized X-Y table substrate [1]. The resulting crystallite size distribution is simulated by a solidification model consisting of nucleation/fragmentation and constrained growth description, calibrated via structural data from a single droplet splat [2]. This is enabled by a semi-analytical thermal modeling framework, based on superposition of moving Green's and Rosenthal functions for the temperature field from a Gaussian source distribution [3], in which the deposit solid geometry and heat transfer boundary conditions are accounted for by mirror source images of modulated efficiency [4]. The simulation model is implemented for layered ellipsoidal deposit sections on planar substrates by multi-pass spraying, and its predictions are validated against measured crystal size by image analysis of experimental micrographs of a Mg97ZnY2 alloy, to an error margin of +15%. The computationally efficient simulation provides insight to the deposit microstructure, and is intended as a process observer in a closed-loop, adaptive control scheme based on infrared temperature measurements.

    Keywords:

    Ferrous and non-ferrous materials; Metals;

    References:

    [1] Fukuda H, "Droplet-Based Processing of Magnesium Alloys for the Production of High-Performance Bulk Materials", PhD Thesis, MIE Dept, Northeastern University, Boston, MA (2009). [2] Ioannou Y, Fukuda H, Rebholz C, Liao Y, Ando T. Doumanidis C.C, "Constrained crystal growth during solidification of particles and splats in uniform droplet sprays", Int J Adv Manuf Technol 107, 1205–1221 (2020). [3] Rosenthal, D., "Mathematical Theory of Heat Distribution During Welding and Cutting", Welding Journal 20 (5), (1941), pp. 220s - 234s [4] Carslaw, H.S., Jaeger, J.C., Conduction of Heat in Solids, 2nd Ed, Oxford Science Publ. (1951)

    Cite this article as:

    Doumanidis C. (2022). Microstructure Modeling of Uniform Droplet Sprayed Deposits for Mg Alloy-Based Additive Manufacturing. In F. Kongoli, F. Marquis, N. Chikhradze, T. Prikhna, M. De Campos, S. Lewis, S. Miller, S. Thomas. (Eds.), Sustainable Industrial Processing Summit SIPS2022 Volume 18 Intl. Symp on Advanced Materials, Polymers, Composite, Nanomaterials, Nanotechnologies and Manufacturing (pp. 255-256). Montreal, Canada: FLOGEN Star Outreach